scholarly journals Occurrence of arbuscular mycorrhizal fungi in different cropping systems at Cochabamba, Bolivia (Research Note)

1999 ◽  
Vol 8 (3) ◽  
pp. 309-318 ◽  
Author(s):  
M. VESTBERG ◽  
M. CARDOSO ◽  
A. MÅRTENSSON

The occurrence of arbuscule-forming fungi in different cropping systems was investigated at Cochabamba in the province of Cercado, Bolivia. The cropping systems included grain and mixed pasture systems, with or without fertilization and agrochemicals. Geographically, the soils studied were situated at 17°23'9'' southern latitude and 66°9'35'' western longitude and a mean height of 2600 m above sea level. Spores of four arbuscular mycorrhiza fungi-forming genera were observed; Glomus Tul. & Tul., Entrophospora Ames & Schneider, Sclerocystis Berk. & Broome emend. Almeida & Schenck and Scutellospora Walker & Sanders. Glomus was the dominating genus, followed by Sclerocystis; Scutellospora and Entrophospora were observed occasionally. A cropping system consisting of a native pasture without any fertilization or other plant or soil treatments had the highest numbers of spores and the highest species richness, i.e. eight out of nine species identified. The mycorrhizal diversity measured with the Shannon-Wiener index did however not differ very much between cropping systems. ;

2006 ◽  
Vol 20 (3) ◽  
pp. 513-521 ◽  
Author(s):  
Sidney Luiz Stürmer ◽  
Osmar Klauberg Filho ◽  
Maike Hering de Queiroz ◽  
Margarida Matos de Mendonça

Arbuscular mycorrhizal fungi (AMF) species diversity and mycorrhizal inoculum potential were assessed in areas representative of stages of secondary succession in the Brazilian Atlantic Rain Forest. Within each stage - pioneer, 'capoeirinha' and 'capoeirão'- four transects were established and three soil samples were taken along each transect. The plant community was dominated by Pteridium aquilinium in the pioneer stage, while Dodonaea viscosa and P. aquilinium were co-dominants in the 'capoeirinha' stage. In capoeirão, Miconia cinnamomifolia was dominant followed by Euterpe edulis. Total spore number per 100 g soil was significantly larger in the 'capoeirinha' stage than in the other stages, although the number of viable spores was similar among stages. Acaulosporaceae and Glomeraceae were the predominant families accounting for 83% of the total spores recovered. Of the 18 spore morphotypes, 10 were allocated to known species, with Acaulospora sp. and Glomus sp. being the dominants recovered in all samples. Simpson's index of diversity and evenness for AMF species were not significantly different among the successional stages and AMF species richness was negatively correlated with plant species richness. Soil from 'Capoeirinha" showed the highest inoculum potential (37%). Dominance of the mycorrhizal community by few sporulators and the relationship between plant and fungal diversity are discussed.


2014 ◽  
Vol 48 (3) ◽  
pp. 279-290 ◽  
Author(s):  
Tomoko KOJIMA ◽  
Norikuni OKA ◽  
Toshihiko KARASAWA ◽  
Keiki OKAZAKI ◽  
Shotaro ANDO ◽  
...  

2020 ◽  
Author(s):  
Ifeyinwa Monica Uzoh ◽  
Chukwuebuka Christopher Okolo ◽  
Akudo Ogechukwu Onunwa ◽  
Olubukola Oluranti Babalola

<p><strong>Abstract</strong></p><p>Cowpea, a food and nutrition security crop is being threatened by decline in soil fertility especially in small holder farmstead. The natural arbuscular mycorrhizal fungi in the soil could improve its ability to acquire and retain nutrients thereby leading to higher yield. This irrigated field research was conducted to determine the effect of biochar rates and cropping systems on selected soil chemical properties, soil microbial biomass carbon (SMBC), nitrogen (SMBN), phosphorus (SMBP), and vesicular-arbuscular mycorrhizal (VAM) spore count and mycorrhizal fungi colonization (AMF) of cowpea. Experimental design was 3 x 3 factorial in randomized complete block design (RCBD). Factor A was three cropping systems; sole cowpea, intercropping and intra-cropping, while factor B was three biochar rates; control (biochar at 0 t ha<sup>-1</sup> (B<sub>0</sub>)), biochar at 2.5 t ha<sup>-1 </sup>(B<sub>1</sub>) and biochar at 5 t ha<sup>-1</sup> (B<sub>2</sub>). These were replicated in three blocks to constitute 27 plots. The entire plot was cleared, ploughed and demarcated into beds with hoes and diggers. Cowpea sole or inter- or intra- cropped with maize were planted in a spacing distance of 25cm by 75cm, with intercropped cowpea being in-between the interrow spacing (75 cm), while the intracropped cowpeas was planted between the intrarow spacing (25 cm). Biochar soil amendment were applied two weeks after planting by making a groove in-between the rows in the soil and covering them with soil. The result showed that biochar soil amendment and interaction of biochar with cropping system significantly (p<0.05) affected SMBN, SMBC, total  VAM spore count and AMF colonization by cowpea, whereas cropping system significantly affected only total VAM spore count and AMF colonization by cowpea. B<sub>2</sub> amended soil had the highest SMBC content (0.028 mg kg<sup>-1</sup>) while the least was from control plot (0.021 mg kg <sup>-1</sup>), SMBN was highest in B<sub>1 </sub>amended soil (0.004 mg kg<sup>-1</sup>), followed by control plot (0.002 mg kg<sup>-1</sup>). Control had higher AMF and total VAM spore count while biochar amended soil had higher soil microbial properties. Considering the cropping systems, inter and intra-cropping had higher microbial biomass and total VAM spore count than sole cowpea whereas sole cowpea had higher AMF infection of cowpea than the intercropped cowpea. Biochar at 5 tha<sup>-1</sup> had the highest available P. Generally, this study showed superiority of the interaction of biochar with cropping systems over sole cropping in the improvement of soil properties in degraded soils of North-West province of South Africa.</p><p>Key words: Cropping systems; Chromic Luvisol; Microbial properties; Soil fertility; Soil amendment</p>


2005 ◽  
Vol 85 (1) ◽  
pp. 31-40 ◽  
Author(s):  
C. Plenchette ◽  
C. Clermont-Dauphin ◽  
J. M. Meynard ◽  
J. A. Fortin

Market globalization, demographic pressure, and environmental degradation have led us to reconsider many of our current agricultural systems. The heavy use of chemical inputs, including fertilizers and pesticides, has resulted in pollution, decreased biodiversity in intensively-farmed regions, degradation of fragile agro-ecosystems, and prohibitive costs for many farmers. Low input sustainable cropping systems should replace conventional agriculture, but this requires a more comprehensive understanding of the biological interactions within agro-ecosystems. Mycorrhizal fungi appear to be the most important telluric organisms to consider. Mycorrhizae, which result from a symbiosis between these fungi and plant roots, are directly involved in plant mineral nutrition, the control of plant pathogens, and drought tolerance. Most horticultural and crop plants are symbiotic with arbuscular mycorrhizal fungi. Mycorrhizal literature is abundant, showing that stimulation of plant growth can be mainly attributed to improved phosphorous nutrition. Although the mycorrhizal potential of its symbiosis to improve crop production is widely recognized, it is not implemented in agricultural systems. There is an urgent need to improve and widely apply analytical methods to evaluate characteristics such as, relative field mycorrhizal dependency, soil mycorrhizal infectivity, and mycorrhizal receptivity of soil. Decreased use of fertilizers, pesticides, and tillage will favour arbuscular mycorrhizal fungi. However, shifting from one system to a more sustainable one is not easy since all components of the cropping system are closely linked. Different cases, from actual agricultural practices in different countries, are analyzed to highlight situations in which mycorrhizae might or might not play a role in developing more sustainable agriculture. Key words: Cropping systems, mycorrhizae, sustainability, technical itineraries, rotation


Sign in / Sign up

Export Citation Format

Share Document