scholarly journals Species richness and composition of arbuscular mycorrhizal fungi occurring on eucalypt trees (Eucalyptus camaldulensis Dehnh.) in rainy and dry season

Author(s):  
S Khaekhum
2006 ◽  
Vol 20 (3) ◽  
pp. 513-521 ◽  
Author(s):  
Sidney Luiz Stürmer ◽  
Osmar Klauberg Filho ◽  
Maike Hering de Queiroz ◽  
Margarida Matos de Mendonça

Arbuscular mycorrhizal fungi (AMF) species diversity and mycorrhizal inoculum potential were assessed in areas representative of stages of secondary succession in the Brazilian Atlantic Rain Forest. Within each stage - pioneer, 'capoeirinha' and 'capoeirão'- four transects were established and three soil samples were taken along each transect. The plant community was dominated by Pteridium aquilinium in the pioneer stage, while Dodonaea viscosa and P. aquilinium were co-dominants in the 'capoeirinha' stage. In capoeirão, Miconia cinnamomifolia was dominant followed by Euterpe edulis. Total spore number per 100 g soil was significantly larger in the 'capoeirinha' stage than in the other stages, although the number of viable spores was similar among stages. Acaulosporaceae and Glomeraceae were the predominant families accounting for 83% of the total spores recovered. Of the 18 spore morphotypes, 10 were allocated to known species, with Acaulospora sp. and Glomus sp. being the dominants recovered in all samples. Simpson's index of diversity and evenness for AMF species were not significantly different among the successional stages and AMF species richness was negatively correlated with plant species richness. Soil from 'Capoeirinha" showed the highest inoculum potential (37%). Dominance of the mycorrhizal community by few sporulators and the relationship between plant and fungal diversity are discussed.


1999 ◽  
Vol 8 (3) ◽  
pp. 309-318 ◽  
Author(s):  
M. VESTBERG ◽  
M. CARDOSO ◽  
A. MÅRTENSSON

The occurrence of arbuscule-forming fungi in different cropping systems was investigated at Cochabamba in the province of Cercado, Bolivia. The cropping systems included grain and mixed pasture systems, with or without fertilization and agrochemicals. Geographically, the soils studied were situated at 17°23'9'' southern latitude and 66°9'35'' western longitude and a mean height of 2600 m above sea level. Spores of four arbuscular mycorrhiza fungi-forming genera were observed; Glomus Tul. & Tul., Entrophospora Ames & Schneider, Sclerocystis Berk. & Broome emend. Almeida & Schenck and Scutellospora Walker & Sanders. Glomus was the dominating genus, followed by Sclerocystis; Scutellospora and Entrophospora were observed occasionally. A cropping system consisting of a native pasture without any fertilization or other plant or soil treatments had the highest numbers of spores and the highest species richness, i.e. eight out of nine species identified. The mycorrhizal diversity measured with the Shannon-Wiener index did however not differ very much between cropping systems. ;


Botany ◽  
2018 ◽  
Vol 96 (11) ◽  
pp. 767-778 ◽  
Author(s):  
Catarina Maria Aragão de Mello ◽  
Gladstone Alves da Silva ◽  
Fritz Oehl ◽  
Iolanda Ramalho da Silva ◽  
Inácio Pascoal do Monte Junior ◽  
...  

The objective of this study was to determine the species richness, diversity, and communities of arbuscular mycorrhizal fungi (AMF), based on the morphology of their spores, in maize plantations along an edaphoclimatic gradient going from a humid zone (original area of Atlantic rainforest), to a transition zone and a drier zone (original area of Caatinga), to increase the understanding of the ecology of AMF in tropical agroecosystems. We extracted glomerospores from soil samples from maize plantations in each mesoregion and analysed AMF propagules and community structure. A total of 57 AMF taxa were identified, of which two are new to science. The most probable number of AMF infective propagules did not differ among the three areas. A greater number of glomerospores was obtained from the transition site, whereas species richness for AMF differed between the high humidity and transition sites. The composition of AMF communities differed among sites, with edaphic attributes significantly associated with AMF community composition. The environmental conditions of each mesoregion contribute to the structural differences of AMF assemblages in soils cultivated by the same host plant (maize).


2016 ◽  
Vol 52 (6) ◽  
pp. 879-893 ◽  
Author(s):  
Szymon Zubek ◽  
Marta L. Majewska ◽  
Janusz Błaszkowski ◽  
Anna M. Stefanowicz ◽  
Marcin Nobis ◽  
...  

Author(s):  
Xue Yang ◽  
Meng Yuan ◽  
Jixun Guo ◽  
Lianxuan Shi ◽  
Tao Zhang

We examined the impacts of warming, nitrogen (N) addition and suppression of arbuscular mycorrhizal fungi (AMF) on soil bacterial and fungal richness and community composition in a field experiment. AMF root colonization and the concentration of an AMF-specific phospholipid fatty acid (PLFA) were significantly reduced after the application of the fungicide benomyl as a soil drench. Warming and N addition had no independent effects but interactively decreased soil fungal richness, while warming, N addition and AMF suppression together reduced soil bacterial richness. Soil bacterial and fungal species diversity was lower with AMF suppression, indicating that AMF suppression have negative effect on microbial diversity. Warming and N addition decreased the net loss of plant species and the plant species richness, respectively. AMF suppression reduced plant species richness and the net gain of plant species but enhanced the net loss of plant species. Structural equation modeling (SEM) demonstrated that the soil bacterial community responded to the increased soil temperature (ST) induced by warming and the increased soil available N (AN) induced by N addition through changes in AMF colonization and plant species richness; ST directly affected the bacterial community, but AN affected both the soil bacterial and fungal communities via AMF colonization. In addition, higher mycorrhizal colonization increased the plant species richness by increasing the net gains in plant species under warming and N addition. IMPORTANCE Arbuscular mycorrhizal fungi (AMF) can influence the composition and diversity of plant communities. Previous studies have shown that climate warming and N deposition reduce the effectiveness of AMF. However, how AMF affects soil bacterial and fungal communities under these global change drivers are still poorly understood. A 4-year field study revealed that AMF suppression decreased bacterial and fungal diversity irrespective of warming or N addition, while AMF suppression interacted with warming or N addition to reduce bacterial and fungal richness. In addition, bacterial and fungal community compositions were determined by mycorrhizal colonization which was regulated by soil AN and ST. These results suggest that AMF suppression can aggravate the severe losses to native soil microbial diversity and functioning caused by global changes and thus AMF plays a vital role in maintaining belowground ecosystem stability in the future.


2016 ◽  
Vol 40 (3) ◽  
pp. 326-336 ◽  
Author(s):  
Hesmael Antonio Orlandi Costa ◽  
Sidney Luiz Stürmer ◽  
Carla Ragonezi ◽  
Paulo Henrique Grazziotti ◽  
Danielle Cristina Fonseca Santos Grazziotti ◽  
...  

ABSTRACT Syngonanthus elegans is an endangered plant species occurring in the Brazilian Cerrado whose interaction with arbuscular mycorrhizal fungi (AMF) is poorly understood. The aim of this work was to evaluate the occurrence of AMF species and mycorrhizal colonization of S. elegans in two sampling areas named "Soberbo" stream (Soberbo) and "Parque Nacional das Sempre-Vivas" (Park), both found in Diamantina-MG, Brazil. In each area, one plot (100 x 100 m) was established, and roots and soil samples near the roots were collected from 10 plants in each plot. Further sampling included three specimens each of Loudetiopsis chrysothrix and Xyris sp.. Typical mycorrhizal colonization structures were observed in S. elegans roots, and colonization was measured at 75%. Considering both sites and all three hosts, 26 AMF species were recovered, 8 of which were identified only at the genus level. Glomus sp. 1, Scutellospora pernambucana, Acaulospora cavernata and Acaulospora mellea were classified as dominant in both areas. Other species were also considered dominant, including Glomus sp. 4 in Soberbo and Dentiscutata biornata and Gigaspora albida in Park. Trap cultures revealed the presence of seven additional species. For S. elegans, AMF species richness was slightly higher in Park than in Soberbo. Simpson diversity and evenness were slightly higher in Soberbo for S. elegans-associated AMF communities. Overall, S. elegans is highly colonized by arbuscular mycorrhizal fungi and is associated with a wide range of AMF species in the field, suggesting that this association is important for the establishment and survival of this threatened species. Some of the observed species may be new to science.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chaiya Klinsukon ◽  
Saisamorn Lumyong ◽  
Thomas W. Kuyper ◽  
Sophon Boonlue

AbstractSoil salinity affects soil quality and reduces plant performance. Arbuscular mycorrhizal fungi (AMF) can enhance the tolerance of plants under salinity stress. Cultivation of eucalyptus (Eucalyptus camaldulensis), which exhibits high water use efficiency, is possible in saline areas to produce raw materials for the pulp industry. We determined the effects of arbuscular mycorrhizal fungi (AMF) on the growth and survival of eucalyptus seedlings under saline conditions. Three different clones of eucalyptus seedlings were pre-inoculated with three salt-tolerant AMF species, namely Glomus sp.2, Gigaspora albida and G. decipiens, and without pre-inoculation. The seedlings were grown in a greenhouse for 45 days. They were then transferred to individual pots, filled with field soil and subsequently treated with NaCl solution until electro-conductivity (EC) reached 10, 15 and 20 dS m−1. They were watered for 90 days under nursery conditions. The results show that increased salinity levels reduced plant performance, fractional AMF root colonization, spore number, and eucalypt K/Na ratio. AMF significantly increased chlorophyll and decreased leaf proline concentrations by more than 50% and 20% respectively and increased the K/Na ratio three- to six-fold compared with non-inoculated plants. Pre-inoculation with AMF before outplanting also improved plant performance by more than 30% under salinity stress compared to non-inoculated plants. We conclude that AMF can alleviate the negative impacts of salinity on plant physiological and biochemical parameters.


2021 ◽  
Vol 15 (1) ◽  
pp. 141-150
Author(s):  
Kuber Baral ◽  
Anjana Giri ◽  
Pradeep Kumar Shah ◽  
Karl Kemmelmeier ◽  
Sidney Luiz Stürmer ◽  
...  

Disturbances can affect the incidence of Arbuscular Mycorrhizal Fungi (AMF) in both agricultural and natural ecosystems. The present study is a first attempt for the qualitative assessment of AMF diversity in adjacent areas of a forest ecosystem with different land uses and assess levels of mycorrhizal colonization by these fungi. A total of five soil samples were taken randomly from each of the following areas situated within the same landscape: undisturbed coniferous forest (UF), degraded forest (DF) and cultivated land (CL). A total of 22 taxa of arbuscular mycorrhizal fungi belonging to eight genera were identified morphologically, Glomus and Acaulospora being the most common. Species richness ranged from 11-14 among land use areas, with 14 species in UF and 11 species in CL. Acaulospora mellea, Gigaspora sp. and two non-identified Glomus species were detected in all areas. While species richness did not differ significantly amongst areas, diversity at the family level was 43% less in CL than in UF. Mean mycorrhizal colonization was higher in DF (28%) than CL (20%). We concluded that land use mainly affected fungal diversity only at the family level and had no impact on mycorrhizal development in sampled roots. This work provides the first step to identify native AMF species in Nepal that might be cultured for further use by small farmers in a sustainable agriculture approach.


Sign in / Sign up

Export Citation Format

Share Document