scholarly journals Occurrence of arbuscular mycorrhizal fungi in soils of early stages of a secondary succession of Atlantic Forest in South Brazil

2006 ◽  
Vol 20 (3) ◽  
pp. 513-521 ◽  
Author(s):  
Sidney Luiz Stürmer ◽  
Osmar Klauberg Filho ◽  
Maike Hering de Queiroz ◽  
Margarida Matos de Mendonça

Arbuscular mycorrhizal fungi (AMF) species diversity and mycorrhizal inoculum potential were assessed in areas representative of stages of secondary succession in the Brazilian Atlantic Rain Forest. Within each stage - pioneer, 'capoeirinha' and 'capoeirão'- four transects were established and three soil samples were taken along each transect. The plant community was dominated by Pteridium aquilinium in the pioneer stage, while Dodonaea viscosa and P. aquilinium were co-dominants in the 'capoeirinha' stage. In capoeirão, Miconia cinnamomifolia was dominant followed by Euterpe edulis. Total spore number per 100 g soil was significantly larger in the 'capoeirinha' stage than in the other stages, although the number of viable spores was similar among stages. Acaulosporaceae and Glomeraceae were the predominant families accounting for 83% of the total spores recovered. Of the 18 spore morphotypes, 10 were allocated to known species, with Acaulospora sp. and Glomus sp. being the dominants recovered in all samples. Simpson's index of diversity and evenness for AMF species were not significantly different among the successional stages and AMF species richness was negatively correlated with plant species richness. Soil from 'Capoeirinha" showed the highest inoculum potential (37%). Dominance of the mycorrhizal community by few sporulators and the relationship between plant and fungal diversity are discussed.

Author(s):  
Xue Yang ◽  
Meng Yuan ◽  
Jixun Guo ◽  
Lianxuan Shi ◽  
Tao Zhang

We examined the impacts of warming, nitrogen (N) addition and suppression of arbuscular mycorrhizal fungi (AMF) on soil bacterial and fungal richness and community composition in a field experiment. AMF root colonization and the concentration of an AMF-specific phospholipid fatty acid (PLFA) were significantly reduced after the application of the fungicide benomyl as a soil drench. Warming and N addition had no independent effects but interactively decreased soil fungal richness, while warming, N addition and AMF suppression together reduced soil bacterial richness. Soil bacterial and fungal species diversity was lower with AMF suppression, indicating that AMF suppression have negative effect on microbial diversity. Warming and N addition decreased the net loss of plant species and the plant species richness, respectively. AMF suppression reduced plant species richness and the net gain of plant species but enhanced the net loss of plant species. Structural equation modeling (SEM) demonstrated that the soil bacterial community responded to the increased soil temperature (ST) induced by warming and the increased soil available N (AN) induced by N addition through changes in AMF colonization and plant species richness; ST directly affected the bacterial community, but AN affected both the soil bacterial and fungal communities via AMF colonization. In addition, higher mycorrhizal colonization increased the plant species richness by increasing the net gains in plant species under warming and N addition. IMPORTANCE Arbuscular mycorrhizal fungi (AMF) can influence the composition and diversity of plant communities. Previous studies have shown that climate warming and N deposition reduce the effectiveness of AMF. However, how AMF affects soil bacterial and fungal communities under these global change drivers are still poorly understood. A 4-year field study revealed that AMF suppression decreased bacterial and fungal diversity irrespective of warming or N addition, while AMF suppression interacted with warming or N addition to reduce bacterial and fungal richness. In addition, bacterial and fungal community compositions were determined by mycorrhizal colonization which was regulated by soil AN and ST. These results suggest that AMF suppression can aggravate the severe losses to native soil microbial diversity and functioning caused by global changes and thus AMF plays a vital role in maintaining belowground ecosystem stability in the future.


1999 ◽  
Vol 8 (3) ◽  
pp. 309-318 ◽  
Author(s):  
M. VESTBERG ◽  
M. CARDOSO ◽  
A. MÅRTENSSON

The occurrence of arbuscule-forming fungi in different cropping systems was investigated at Cochabamba in the province of Cercado, Bolivia. The cropping systems included grain and mixed pasture systems, with or without fertilization and agrochemicals. Geographically, the soils studied were situated at 17°23'9'' southern latitude and 66°9'35'' western longitude and a mean height of 2600 m above sea level. Spores of four arbuscular mycorrhiza fungi-forming genera were observed; Glomus Tul. & Tul., Entrophospora Ames & Schneider, Sclerocystis Berk. & Broome emend. Almeida & Schenck and Scutellospora Walker & Sanders. Glomus was the dominating genus, followed by Sclerocystis; Scutellospora and Entrophospora were observed occasionally. A cropping system consisting of a native pasture without any fertilization or other plant or soil treatments had the highest numbers of spores and the highest species richness, i.e. eight out of nine species identified. The mycorrhizal diversity measured with the Shannon-Wiener index did however not differ very much between cropping systems. ;


2009 ◽  
Vol 19 (4) ◽  
pp. 809-812 ◽  
Author(s):  
Lea Corkidi ◽  
Jeff Bohn ◽  
Mike Evans

The insecticide bifenthrin is a synthetic pyrethroid required by regulation for the production of nursery crops to suppress the red imported fire ant (Solenopsis invicta) in Orange and Riverside counties in California. We conducted a greenhouse experiment to analyze the effects of different rates of bifenthrin on the growth and mycorrhizal colonization of ‘Silver Queen’ corn (Zea mays) inoculated with VAM 80®, a mycorrhizal inoculum with spores, hyphae, and root pieces colonized by Glomus spp., used to inoculate California native plants in containers. Corn was used because it is the standard indicator plant used for mycorrhizal inoculum potential assays and it is a good host for arbuscular mycorrhizal fungi propagation. The application of bifenthrin had no detrimental effects on mycorrhizal colonization of corn. There were no significant differences in the root length colonized by arbuscules, vesicles, or in the total percentage of mycorrhizal colonization obtained in the plants grown with the different bifenthrin rates 6 weeks after transplanting. However, there were significant interactions on the effects of bifenthrin and mycorrhizal colonization on plant growth. The addition of 12, 15, and 25 ppm of bifenthrin reduced corn biomass of nonmycorrhizal plants, but had no effect on the growth of mycorrhizal plants. There were no significant differences between the mycorrhizal and nonmycorrhizal plants grown with 0, 10, and 12 ppm of bifenthrin. In contrast, inoculation with VAM 80® increased the shoot dry weight of plants grown with 15 and 25 ppm of bifenthrin. This study showed that mycorrhizal colonization can be helpful to overcome some of the negative effects of bifenthrin on the growth of corn.


2010 ◽  
Vol 3 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Roger C. Anderson ◽  
M. Rebecca Anderson ◽  
Jonathan T. Bauer ◽  
Mitchell Slater ◽  
Jamie Herold ◽  
...  

Botany ◽  
2018 ◽  
Vol 96 (11) ◽  
pp. 767-778 ◽  
Author(s):  
Catarina Maria Aragão de Mello ◽  
Gladstone Alves da Silva ◽  
Fritz Oehl ◽  
Iolanda Ramalho da Silva ◽  
Inácio Pascoal do Monte Junior ◽  
...  

The objective of this study was to determine the species richness, diversity, and communities of arbuscular mycorrhizal fungi (AMF), based on the morphology of their spores, in maize plantations along an edaphoclimatic gradient going from a humid zone (original area of Atlantic rainforest), to a transition zone and a drier zone (original area of Caatinga), to increase the understanding of the ecology of AMF in tropical agroecosystems. We extracted glomerospores from soil samples from maize plantations in each mesoregion and analysed AMF propagules and community structure. A total of 57 AMF taxa were identified, of which two are new to science. The most probable number of AMF infective propagules did not differ among the three areas. A greater number of glomerospores was obtained from the transition site, whereas species richness for AMF differed between the high humidity and transition sites. The composition of AMF communities differed among sites, with edaphic attributes significantly associated with AMF community composition. The environmental conditions of each mesoregion contribute to the structural differences of AMF assemblages in soils cultivated by the same host plant (maize).


Sign in / Sign up

Export Citation Format

Share Document