scholarly journals Optimal Allocation of Photovoltaic Based and DSTATCOM in a Distribution Network under Multi Load Levels

2019 ◽  
Vol 4 (8) ◽  
pp. 114-119 ◽  
Author(s):  
Montaser Abd El Sattar Mohamed ◽  
Adel A. Elbaset Mohammed ◽  
Amal Mohamed Abd Elhamed ◽  
Mohamed Ebeed Hessean

In this paper, the optimal sitting and sizing of photovoltaic (PV) based distributed generator (DG) and distribution static synchronous compensator (DSTATCOM) are assigned separately and simultaneously under multi-load levels in radial distribution grid. Grey wolf optimizer (GWO) is an efficient optimization technique which is applied for solving the allocation problem of PV based DG and DSTATCOM in standard IEEE 85 bus distribution system. Six load levels are considered including 25%, 50%, 75%, 100%, 125 % and 150% of rated loading for power loss minimization. Encourage results are obtained with inclusion of PV based DG or DSTATCOM in addition of that the superior case are captured with inclusion of PV units along with DSTATCOM in terms of the power losses minimization. Moreover, the simulation results verify the applicability and efficiency of GWO technique for solving the allocation problem of PV and DTSTACOM

2020 ◽  
Vol 9 (2) ◽  
pp. 1200-1207

Inappropriate selection of location and corresponding size of Distributed Generator (DGs) in electrical network may have increased power losses in the system. Application of incorporating DG in system has eased the problem of high power losses, voltage stability, low reliability and poor power quality. This paper suggests a simple and efficient load flow technique known as direct load flow method to find the optimal allocation of Type-3 DG in the distribution system. The presented method was developed and tested in two distribution networks with varying size and complexities and the effect of size and location of DG with respect to real power losses while maintaining the voltage profile of system within limits is examined with verification and discussed in detail.


2020 ◽  
Vol 64 (2) ◽  
pp. 157-169
Author(s):  
Benalia M'hamdi ◽  
Madjid Teguar ◽  
Benaissa Tahar

The optimal allocation and size of decentralized generating units are essential to minimize power losses, while meeting the demand for active and reactive power in a distribution system. In other words, most of the total energy produced can be efficiently exploited by end users. In addition, if the DGs are of optimal size and location in the distribution system, the reliability, stability and efficiency of the power system are guaranteed. This paper focuses on reducing power losses and improving the voltage profile by accurately identifying the optimal location and sizing of Distributed Generation based on three indexes, namely the IVM Index Vector Method, the VDI Voltage Deviation Index and the VSI Voltage Stability Index. Two types of DGs were considered for the analysis: DGs operating with unit power factor and DGs operating with a lagging power factor. Three optimization algorithms are applied to determine the optimal sizes of decentralized generation units in a power distribution network which are GWO, WOA and PSO. The results obtained in this article show that the three algorithms give very similar values. DG at lagging power factor gives better results compared with those obtained with DGs at unity power factor. In terms of loss reduction and minimum bus voltage, the best results are obtained for the VSI index with a DG at a power factor of 0.9.


2020 ◽  
Vol 152 ◽  
pp. 03002
Author(s):  
Mohamad Khairuzzaman Mohamad Zamani ◽  
Ismail Musirin ◽  
Saiful Izwan Suliman ◽  
Sharifah Azma Syed Mustaffa ◽  
Nur Zahirah Mohd Ali ◽  
...  

As the load demand in a power system increases, power system operators struggle to maintain the power system to be operated within its acceptable limits. If no mitigation actions are taken, a power system may suffer from voltage collapse, which in turn leads to blackout. Flexible AC Transmission System (FACTS) devices can be employed to help improve the voltage profile of the power system. This paper presents the implementation of Chaotic Immune Symbiotic Organism Search (CISOS) optimization technique to solve optimal Thyristor Controlled Series Compensator (TCSC) in a power system for voltage profile improvement. Validation process are conducted on IEEE 26-bus RTS resulting in the capability of CISOS in solving the allocation problem with a better voltage profile. Comparative studies conducted with respect to Particle Swarm Optimization (PSO) and Evolutionary Programming (EP) has revealed the superiority of CISOS over PSO and EP in solving the optimal allocation problem by producing optimal solution with a better voltage profile. The results and information obtained from this study can help power system operator in terms of optimal compensation in power system as well as improving the operation of a power system.


Author(s):  
M. J. Tahir ◽  
Badri. A. Bakar ◽  
M. Alam ◽  
M. S. Mazlihum

<p>Mostly loads are inductive in nature in content of distribution side for any power system. Due to which system faces high power losses, voltage drop and reduction in system power factor. Capacitor placement is a common method to improve these factors. To maximize the reduction of inductive load impact, optimal capacitor placement (OCP) is necessary with the objective function of system cost minimization for voltage profile enhancement, power factor improvement and power losses minimization. As OCP is a non-linear problem with equality and inequality limitations, so the stated objective depends upon he placement and sizes of the capacitor banks. Electrical transient analyzer program (ETAP) software is used for the evaluation and modelling the power systems and genetic algorithm (GA) is used as an optimization technique for the minimization of the objective function. In this paper, to show the effectiveness of the technique IEEE 4bus,33bus system and NTDC 220KV real time grid system is modelled and evaluated in terms of objective minimization i-e maximum cost saving of the power system</p>


2019 ◽  
Vol 8 (3) ◽  
pp. 978-984
Author(s):  
Nur Ainna Shakinah Abas ◽  
Ismail Musirin ◽  
Shahrizal Jelani ◽  
Mohd Helmi Mansor ◽  
Naeem M. S. Honnoon ◽  
...  

This paper presents the optimal multiple distributed generations (MDGs) installation for improving the voltage profile and minimizing power losses of distribution system using the integrated monte-carlo evolutionary programming (EP). EP was used as the optimization technique while monte carlo simulation is used to find the random number of locations of MDGs. This involved the testing of the proposed technique on IEEE 69-bus distribution test system. It is found that the proposed approach successfully solved the MDGs installation problem by reducing the power losses and improving the minimum voltage of the distribution system.


Author(s):  
Abdulhamid Musa ◽  
Tengku Juhana Tengku Hashim

This paper presents a Genetic Algorithm (GA) for optimal location and sizing of multiple distributed generation (DG) for loss minimization. The study is implemented on a 33-bus radial distribution system to optimally allocate different numbers of DGs through the minimization of total active power losses and voltage deviation at power constraints of 0 – 2 MW and 0 – 3 MW respectively. The study proposed a PQ model of DG and Direct Load Flow (DLF) technique that uses Bus Incidence to Branch current (BIBC) and Branch Current to Bus Voltage (BCBV) matrices. The result obtained a minimum base case voltage level of 0.9898 p.u at bus 18 with variations of voltage improvements at other buses after single and multiple DG allocations in the system. Besides, the total power loss before DG allocation is observed as 0.2243 MW, and total power loss after DG allocation was determined based on the power constraints. Various optimal locations were seen depending on the power limits of different DG sizes. The results have shown that the impact of optimal allocation and sizing of three DG is more advantageous concerning voltage improvement, reduction of the voltage deviation and also total power loss in the distribution system. The results obtained in the 0 – 2 MW power limit is consistent to the 0 – 3 MW power limits regarding the influence of allocating DG to the network and minimization of total power losses.


Author(s):  
N. Md. Saad ◽  
M. Z. Sujod ◽  
Lee Hui Ming ◽  
M. F. Abas ◽  
M. S. Jadin ◽  
...  

As the rapid development of photovoltaic (PV) technology in recent years with the growth of electricity demand, integration of photovoltaic distributed generation (PVDG) to the distribution system is emerging to fulfil the demand. There are benefits and drawbacks to the distribution system due to the penetration of PVDG. This paper discussed and investigated the impacts of PVDG location and size on distribution power systems. The medium voltage distribution network is connected to the grid with the load being supplied by PVDG. Load flow and short circuit calculation are analyzed by using DigSILENT Power Factory Software. Comparisons have been made between the typical distribution system and the distribution system with the penetration of PVDG. Impacts in which PVDG location and size integrates with distribution system are investigated with the results given from the load flow and short circuit analysis. The results indicate positive impacts on the system interconnected with PVDG such as improving voltage profile, reducing power losses, releasing transmission and distribution grid capacity. It also shows that optimal locations and sizes of DGs are needed to minimize the system’s power losses. On the other hand, it shows that PVDG interconnection to the system can cause reverse power flow at improper DG size and location and increases short circuit level.


Sign in / Sign up

Export Citation Format

Share Document