scholarly journals Rare Earth Elements Assessment in the Granitoids of Part of Southwestern Nigeria

Author(s):  
Victoria B. Omotunde ◽  
Akinade S. Olatunji ◽  
Maryam O. Abdus-Salam

The Rare Earth Elements (REE) composition of granitoids in and around Ila-Orangun area Southwestern Nigeria was assessed in order to ascertain their potential for possible exploitation. Detailed lithological mapping of the area was undertaken followed by whole rock geochemical analysis of representative samples of the granitoids using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) technique. Petrographic study of the samples was carried out as well as the interpretation of the geochemical data using diverse geochemical discrimination plots. The rock units mapped were biotite granite gneiss, granite gneiss and hornblende biotite granite. Biotite hornblende gneiss, quartzite, talc-chlorite-tremolite-schist, mica schist and pegmatites were the surrounding country rocks. The REE concentrations (in ppm) revealed higher concentrations of the light REEs compared to the heavy REEs. The fractionation ratio, (La/Yb)N ranged from 4.35-15.04 (granite gneiss) and 13.78-18.48 (hornblende biotite granite) indicating enrichment in LREEs over the HREEs. The spider plot for the REEs also showed that the granitoids are LREE-enriched and HREE-depleted suggesting fractional crystallisation and a distinct negative Eu anomaly indicating plagioclase fractionation. Enrichment plot also revealed that the REEs in the granitoids are significantly enriched. Comparison with other areas showed that the granitoids of the study area especially the hornblende biotite granite has higher concentrations of REEs and may be a possible pointer of REE mineralisation.

2021 ◽  
Vol 315 ◽  
pp. 02004
Author(s):  
Tatiana Cherkasova ◽  
Anastasia Tikhomirova ◽  
Elizaveta Cherkasova ◽  
Andrey Golovachev

In the context of restrictions due to the sanctions imposed, a key factor in the country's development is the development of new Russian high-tech materials and their production technologies. The study of ash and slag waste from the Kemerovo State District Power Plant was carried out in this work using the methods of inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). It has been established that matrix elements make up the predominant share of ash and slag waste. Rare and rare earth elements in terms of their content are classified as trace elements, however, some of them either have commercial values, or are close to it.


Sign in / Sign up

Export Citation Format

Share Document