scholarly journals Dimensional analysis in the venous system

2018 ◽  
Vol 2 (3) ◽  
pp. 123-130
Author(s):  
Fausto Passariello ◽  

Dimensional analysis, a standard method of Fluid Mechanics, was applied to the field of venous hemodynamics. Three independent physical quantities, velocity, length and pressure, were chosen and seven other ones were used to derive the non-dimensional terms. The mathematical burden was reduced to the minimum and the attention was focused on the results. Among them, a new formulation of an already known non-dimensional term, recalled the flow-length (FL), was identified and selected for a deeper experimental study.

2015 ◽  
Vol 122 ◽  
pp. 545-554 ◽  
Author(s):  
Eric Olmos ◽  
Karine Loubiere ◽  
Céline Martin ◽  
Guillaume Delaplace ◽  
Annie Marc

2021 ◽  
Vol 165 ◽  
pp. 40-50
Author(s):  
Rémy Bois ◽  
Océane Adriao ◽  
Guillaume Delaplace ◽  
Isabelle Pezron ◽  
Alla Nesterenko ◽  
...  

Author(s):  
Marcel Escudier

Turbojet and turbofan engines, rocket motors, road vehicles, aircraft, pumps, compressors, and turbines are examples of machines which require a knowledge of fluid mechanics for their design. The aim of this undergraduate-level textbook is to introduce the physical concepts and conservation laws which underlie the subject of fluid mechanics and show how they can be applied to practical engineering problems. The first ten chapters are concerned with fluid properties, dimensional analysis, the pressure variation in a fluid at rest (hydrostatics) and the associated forces on submerged surfaces, the relationship between pressure and velocity in the absence of viscosity, and fluid flow through straight pipes and bends. The examples used to illustrate the application of this introductory material include the calculation of rocket-motor thrust, jet-engine thrust, the reaction force required to restrain a pipe bend or junction, and the power generated by a hydraulic turbine. Compressible-gas flow is then dealt with, including flow through nozzles, normal and oblique shock waves, centred expansion fans, pipe flow with friction or wall heating, and flow through axial-flow turbomachinery blading. The fundamental Navier-Stokes equations are then derived from first principles, and examples given of their application to pipe and channel flows and to boundary layers. The final chapter is concerned with turbulent flow. Throughout the book the importance of dimensions and dimensional analysis is stressed. A historical perspective is provided by an appendix which gives brief biographical information about those engineers and scientists whose names are associated with key developments in fluid mechanics.


Author(s):  
David Jon Furbish

Some fluid flow problems are sufficiently simple that they can be treated mathematically in a straightforward way, making use of definitions of physical quantities, and taking into account initial and boundary conditions. For example, our derivation of the average velocity in a conduit with parallel walls (Example Problem 3.7.1) was obtained in a straightforward way once we specified the geometry of the problem, then made use of the definition of a Newtonian fluid and the no-slip condition. Whereas this type of analysis may work for some problems, it would be misleading to think that such direct approaches to solving problems are, in principle, always possible, hinging only on one’s mathematical skills and adeptness in specifying the geometry of a problem. Herein arise two noteworthy points. First, when initially examining a problem, one can sometimes obtain a clear idea of the desired solution before attempting a formal mathematical analysis. The means to do this, as we shall see below, is supplied by dimensional analysis, and it is a strategy that ought to be adopted in many circumstances. In fact, it is worth noting that dimensional analysis underlies many of the problems presented in this text. The advantage of knowing the form of a desired solution, of course, is that one has a clear target to guide the subsequent mathematical analysis. Indeed, this is the vantage point from which many classic problems, for example Stokes’s law for settling spheres, were initially examined. Second, a complete mathematical formulation of a problem may not be possible, due to the complexity of the problem, or due to absence of information required to constrain the mathematics of the problem. As a simple example, suppose that we were unaware of the no-slip condition in our analysis of the conduit-flow problem (Example Problem 3.7.1). Our analysis in this case would have essentially ended with (3.70), with the constant of integration C undetermined. Nevertheless, we could get close to our result (3.75) for the average velocity by another way.


Sign in / Sign up

Export Citation Format

Share Document