scholarly journals ANALISIS KEKUATAN PEGAS PRESSURE REDUCER SEBAGAI PENURUNAN TEKANAN PADA MESIN DUEL FUEL

2017 ◽  
Vol 17 (2) ◽  
pp. 31-38
Author(s):  
Dori Yuvenda ◽  
Bambang Sudarmanta ◽  
Erzeddin Alwi

Pressure reducer merupakan komponen utama pada conversion kit pada mesin bahan bakar ganda (duel fuel engine) yang berfungsi sebagai penurun tekanan pada bahan bakar compressed Natural gas dari tangki sebesar ± 250 bar menjadi tekanan kerja pada injektor gas sebesar ± 2 bar, sehingga menyebabkan kekurangan pasokan jumlah bahan bakar dari pressure reducer yang berpengaruh tethadap penurunan performa mesin, baik pada saat perubahan putaran mesin secara tiba-tiba maupun perubahan beban mesin. Mengatasi permasalah tersebut maka diperlukan upaya untuk meningkatkan performa pressure reducer agar lebih adaptif terhadap perubahan kondisi mesin. Salah satu upaya yang dilakukan untuk peningkatan performa tersebut adalah menambah kekuatan konstanta pegas pada area chamber stage dua pressure reducer. Penelitian ini menggunakan mesin Diamond tipe DI 800 dengan sistem dual fuel model indirect injection. Metode yang dilakukan adalah menvariasikan kekuatan konstanta pegas (25,55 N/m, 26,55 N/m, dan 27,55 N/m). Hasil terbaik didapatkan pada konstanta pegas 27,55 N/m terjadi peningkatan jumlah laju aliran gas (mass flow rate) pada saluran keluar (outlet gas pressure reducer) sebesar 7,42%. Hal ini menunjukkan terjadi peningkatan performa pressure reducer pada saat penambahan kontanta pegas pada stage dua

Author(s):  
Elcio Cruz de Oliveira

In Brazil, the National Oil Agency — ANP and the National Metrology Institute elaborated Regulation No 1, on June 19th 2000. This government decree approves the Regulation of the Measurement Technique of Oil and Natural Gas, which establishes the minimum conditions and requirements for the oil and natural gas measurement systems, in order to guarantee accurate and complete results. The natural gas measurement fiscal systems must be projected, calibrated and operated so that the measurement uncertainty does not exceed 1.5%. Based on the norms AGA and ISO, the mathematical model for the calculation of the mass flow rate, depends on quantities that have well known uncertainty such as: orifice plate diameter, pipeline internal diameter, compressibility factor, discharge coefficient, differential pressure, static pressure and flow temperature. However, for the molar mass standard uncertainty fixed values are utilized in Brazil (mainly by IPT and PUC-RJ), around 0.30%, independent of the natural gas composition. The objective of this work is to develop a methodology to calculate the molar mass uncertainty of the natural gas derived from its chemical composition, analyzed by gaseous chromatography and to comparing it with the value currently practiced, evaluating the impact proceeding from this difference in the mass flow rate of the natural gas. Based on this methodology, the molar mass uncertainty is around 0.05% and the fiscal system uncertainty decreases in more than 10% when it is compared with the mass molar fixed value uncertainty.


1999 ◽  
Vol 122 (3) ◽  
pp. 429-438 ◽  
Author(s):  
Kai Chen ◽  
Y. Lawrence Yao ◽  
Vijay Modi

Laser machining efficiency and quality are closely related to gas pressure, nozzle geometry, and standoff distance. Modeling studies of laser machining rarely incorporate gas effects in part because of the complex structure and turbulent nature of jet flow. In this paper, the interaction of a supersonic, turbulent axisymmetric jet with the workpiece is studied. Numerical simulations are carried out using an explicit, coupled solution algorithm with solution-based mesh adaptation. The model is able to make quantitative predictions of the pressure, mass flow rate as well as shear force at the machining front. Effect of gas pressure and nozzle standoff distance on structure of the supersonic shock pattern is studied. Experiments are carried out to study the effect of processing parameters such as gas pressure and standoff distance. The measured results are found to match and hence validate the simulations. The interaction of the oblique incident shock with the normal standoff shock is found to contribute to a large reduction in the total pressure at the machining front and when the nozzle pressure is increased beyond a certain point. The associated reduction in flow rate, fluctuations of pressure gradient and shear force at the machining front could lower the material removal capability of the gas jet and possibly result in a poorer surface finish. The laser cutting experiments show that the variation of cut quality are affected by shock structures and can be represented by the mass flow rate. [S1087-1357(00)01702-0]


2014 ◽  
Vol 989-994 ◽  
pp. 2264-2267
Author(s):  
Dong Fang Zhao ◽  
Feng Guo Liu

This paper investigated a new type of gas distributor with two chambers by CFD software. The distributor has a natural gas inlet and nine nozzle outlets. For the investigation of this project, the mass flow rate of the distributor was analyzed in this paper to provide a way to optimize the structure of distributor. The N-S equations approached with the RNG k-ε turbulence model and the discretization were employed second order upwind. The simulation results will provide a number of useful suggestions and references for the further design.


2021 ◽  
Vol 312 ◽  
pp. 05001
Author(s):  
Edoardo Di Mattia ◽  
Agostino Gambarotta ◽  
Mirko Morini ◽  
Costanza Saletti

Refrigeration is an essential part of the food chain. It is used in all stages of the chain, from industrial food processing to final consumption at home. In these processes, mechanical refrigeration technologies are employed, where compressors increase gas pressure from evaporation to condensation. In industrial refrigeration systems, twin-screw compressors represent the most widely used technology. A detailed mathematical model of a twin-screw compressor has been developed in Simulink® using differential equations for energy and mass balances to simulate the compression cycle that includes suction, compression and discharge phases. Gas pressure and enthalpy can be calculated as time functions during the cycle. However, the computational times obtained limit the possibility to extend the use of the model in the development of control strategies for the whole refrigeration plant in its real operating conditions. Therefore, the detailed model has been used to train a simplified model developed in Matlab®: the simulated mass flow rate, shaft power and the fluid discharge temperature have been employed to identify several geometrical and thermodynamic parameters of the simplified model. The latter relies on non-linear algebraic equations and, thus, requires a very short computational time. A limited performance dataset has been used to train the model, and a different dataset to test it: the results of the models have been compared, and small errors in mass flow rate, shaft power and fluid discharge temperature have been observed.


Author(s):  
Geetesh Goga ◽  
Bhupendra Singh Chauhan ◽  
Sunil Kumar Mahla ◽  
Amit Dhir ◽  
Haeng Muk Cho

1970 ◽  
Vol 92 (3) ◽  
pp. 580-586 ◽  
Author(s):  
R. C. Johnson

The mass flow rate of methane and 19 natural gas mixtures through critical flow nozzles has been calculated. The calculation assumes the flow to be one-dimensional and isentropic. The pressure range is 0 to 1000 psi and the temperature range is from 450 to 700 deg Rankine. From a study of the results, a simple empirical method for making this mass flow rate calculation is proposed. This method would apply to natural gas mixtures whose composition is known and whose components have no more than four carbon atoms.


Author(s):  
Pascal Nucara ◽  
Abdulnaser Sayma

Current gas turbine technology for power generation is generally optimised for natural gas. Recently the use of Low Calorific Value (LCV) fuels gained interest, particularly, Hydrogen rich syngas resulting from coal and solid waste gasification. When LCV fuels are used the performance and behaviour of the engines could significantly change and modifications may be needed. For instance, due to the relatively low heating value of the syngas, higher fuel mass flow rate is required compared to the natural gas combustion case. This leads to a decrease of demand for air from the compressor, which results in increased back pressure, reduction of stall margin and possible compressor instability. In a previous work an exploration of some compressor geometry modifications to allow for high fuel flexibility was conducted on a single axial compressor rotor. The investigation provided insights into the effect of blade shape modifications, such as stagger, lean and sweep on rotor performance. With the same purpose of identifying trends rather than producing optimum design, in this study the analysis is extended to a multistage axial compressor. Two different investigations have been performed, both having, as objective, the shifting of the original mass flow rate towards a lower value while maintaining high performance. In the first study the effect of IGV and stator vanes stagger variations only was considered while in a second approach the re-design of the original machine included modifies to rotor’s stagger angles. In order to understand the change in each single blade performance when modifying the original geometry, the variation of critical parameters such as blade loading and diffusion factor has been here considered in first analysis.


Author(s):  
Nail G. Musakaev ◽  
Stanislav L. Borodin ◽  
Marat K. Khasanov

Natural gas is one of the main energy carriers, for example, in 2014 it accounted for about 22% of the world’s electricity production. The main component of natural gas is methane (77-99%). The largest reserves of methane are concentrated in gas hydrates; according to different sources, their total volume twice exceeds the magnitude of the traditional recoverable reserves of methane. Thus, given the increasing demand and the largest amount compared with other fossil fuels, methane, extracted from gas hydrates, is the most promising source of energy. And for the effective extraction of methane from gas hydrate deposits, theoretical studies are needed.<br> In this paper we consider the problem of gas hydrate decomposition to gas and ice during the gas extraction from the hydrate-containing deposit initially saturated with methane and its hydrate. To solve this problem, we constructed the mathematical model of non-isothermal filtration of an imperfect gas with account of the formation or decomposition of this gas’ hydrate. On the basis of this model, the numerical study of the influence of gas mass flow rate on the dynamics of decomposition of the hydrate was made. It shows that in the case of negative initial temperatures of the reservoir, the dissociation of the gas hydrate will always occur to gas and ice. In this case, regimes of dissociation of the hydrate with a frontal surface or a volume region of phase transitions are possible. It is established that an increase in the mass flow rate of gas extraction first leads to the decomposition of the hydrate on a frontal surface, and then in a volume zone. A further increase in the gas mass flow rate leads to an increase in the length of the volume zone and an increase in the amount of the hydrate decomposed therein.


2020 ◽  
Vol 11 (3) ◽  
pp. 574
Author(s):  
Arief Abdurrakhman ◽  
Totok Soehartanto ◽  
Herry Sufyan Hadi ◽  
Mohammad Berel Toriki ◽  
Bambang Lelono Widjiantoro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document