scholarly journals PENGARUH PENGATURAN WAKTU INJEKSI DAN DURASI INJEKSI TERHADAP BRAKE MEAN EFFECTIVE PRESSURE DAN THERMAL EFFICIENCY PADA MESIN DIESEL DUAL FUEL

2017 ◽  
Vol 17 (2) ◽  
pp. 67-74
Author(s):  
Ahmad Arif ◽  
Nuzul Hidayat ◽  
M Yasep Setiawan

CNG merupakan bahan bakar gas yang potensial untuk internal combustion engine karena lebih ekonomis dan ramah lingkungan. Dalam penelitian ini dilakukan pengujian pengaruh pengaturan waktu injeksi dan durasi injeksi CNG terhadap brake mean effective pressure dan thermal efficiency pada mesin diesel dual fuel berbahan bakar solar dan CNG. Penelitian ini dilakukan secara eksperimental dengan menginjeksikan CNG ke intake manifold yang dikontrol ECU. Metode yang digunakan untuk mengetahui nilai pengaturan optimum adalah dengan mapping waktu injeksi dan durasi injeksi CNG melalui software Vemstune pada komputer. Waktu injeksi diatur pada 35°, 40° dan 45° ATDC dan durasi injeksi sebesar 25, 23 dan 21 ms. Pengujian dilakukan dengan putaran mesin konstan 1500 rpm dan pembebanan dari 500 sampai 4000 watt dengan interval 500 watt. Hasil penelitian menunjukkan bahwa perubahan brake mean effective pressure antara single fuel dan dual fuel relatif kecil karena perubahan arus dan tegangan yang dihasilkan genertor juga kecil. Sedangkan thermal efficiency optimal terdapat pada pengaturan waktu injeksi 35o ATDC dan durasi injeksi 25 ms, yaitu terjadi penurunan thermal efficiency rata-rata sebanyak 31,51% daripada single fuel.

2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Romi Djafar ◽  
Agus Susanto Ginting

Saat ini ketersediaan bakar fosil  semakin  langka serta harganya semakin meningkat sehingga dibutuhkan  sumber energi  alternatif  yang sifatnya dapat diperbaharui. Sumber energi alternatif seperti biomasa dapat dikonversi menjadi syngas melalui proses gasifikasi untuk bebrbagai keperluan misal Internal combustion engine (ICE).                 Pada penelitian ini dilakukan aplikasi syngas reaktor downdraft dari bahan bakar tongkol jagung untuk mesin diesel generator set. Tujuan penelitian adalah mengetahui performa reaktor gasifikasi, performa mesin diesel, dan mengetahui jumlah bahan bakar solar yang tergantikan dengan adanya penambahan syngas.  Untuk mendapatkan hasil penelitian maka produser gas dilewatkan melalui saluran inlet gas analizer yang beroperasi secara real time kemudian keluar menuju intake manifold mesin diesel.  Adapun variasi pembebanan yang dilakukan adalah 200-2000 Watt pada interval 200 Watt dengan kecepatan konstan mesin diesel  sebesar 1500 rpm. Hasil penelitian menunjukkan bahwa komponen syngas yang dihasilkan masing-masing kosentrasi adalah O2 (10,2-26,7%), H2 (7,9-13,6%), CH4 (6,6-19,5%), CO (9,2-16,5%), CO2 (6,3-14,5%).dan N2 (59.8-43.3%). Efisiensi gas dingin gasifikasi diperoleh sebesar 35.5% dengan komsumsi bahan bakar sebesar 1.22 kg/jam.kW. Sedangkan jumlah bahan bakar solar yang tergantikan dengan adanya penambahan syngas yaitu sebesar 47.4%. Secara menyeluruh efisiensi total sistem diperoleh sebesar 10.8%. Kata Kunci: Reaktor, Dual Fuel, Syngas. Efisiensi


Author(s):  
Michael R. Buchman ◽  
W. Brett Johnson ◽  
Amos G. Winter

Turbocharging can provide a cost effective means for increasing the power output and fuel economy of an internal combustion engine. A turbocharger added to an internal combustion engine consists of a coupled turbine and compressor. Currently, turbocharging is common in multi-cylinder engines, but it is not commonly used on single-cylinder engines due to the phase mismatch between the exhaust stroke (when the turbocharger is powered) and the intake stroke (when the engine intakes the compressed air). The proposed method adds an air capacitor, an additional volume in series with the intake manifold, between the turbocharger compressor and the engine intake, to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. This research builds on previous work where it was shown experimentally that a power gain of 29% was achievable and that analytically a power gain of 40–60% was possible using a turbocharger and air capacitor system. The goal of this study is to further analyze the commercial viability of this technology by analyzing the effect of air capacitor turbocharging on emissions, fuel economy, and power density. An experiment was built and conducted that looked at how air capacitor sizing affected emissions, fuel economy, and the equivalence ratio. The experimental data was then used to calibrate a computational model built in Ricardo Wave. Finally this model was used to evaluate strategies to further improve the performance of a single cylinder diesel turbocharged engine with an air capacitor.


2016 ◽  
Vol 18 (8) ◽  
pp. 797-809 ◽  
Author(s):  
Mateos Kassa ◽  
Carrie Hall ◽  
Andrew Ickes ◽  
Thomas Wallner

In internal combustion engines, cycle-to-cycle and cylinder-to-cylinder variations of the combustion process have been shown to negatively impact the fuel efficiency of the engine and lead to higher exhaust emissions. The combustion variations are generally tied to differences in the composition and condition of the trapped mass throughout each cycle and across individual cylinders. Thus, advanced engines featuring exhaust gas recirculation, flexible valve actuation systems, advanced fueling strategies, and turbocharging systems are prone to exhibit higher variations in the combustion process. In this study, the cylinder-to-cylinder variations of the combustion process in a dual-fuel internal combustion engine leveraging late intake valve closing are investigated and a model to predict and address one of the root causes for these variations across cylinders is developed. The study is conducted on an inline six-cylinder heavy-duty dual-fuel engine equipped with exhaust gas recirculation, a variable geometry turbocharger, and a fully flexible variable intake valve actuation system. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode in which a high reactivity fuel is directly injected into the cylinders and a low reactivity fuel is port injected into the cylinders. The cylinder-to-cylinder variations observed in the study have been associated with the maldistribution of the port-injected fuel, which is exacerbated at late intake valve timings. The resulting difference in indicated mean effective pressure between the cylinders ranges from 9% at an intake valve closing of 570° after top dead center to 38% at an intake valve closing of 620° after top dead center and indicates an increasingly uneven fuel distribution. The study leverages both experimental and simulation studies to investigate the distribution of the port-injected fuel and its impact on cylinder-to-cylinder variation. The effects of intake valve closing as well as the impact of intake runner length on fuel distribution were quantitatively analyzed, and a model was developed that can be used to accurately predict the fuel distribution of the port-injected fuel at different operating conditions with an average estimation error of 1.5% in cylinder-specific fuel flow. A model-based control strategy is implemented to adjust the fueling at each port and shown to significantly reduce the cylinder-to-cylinder variations in fuel distribution.


Sign in / Sign up

Export Citation Format

Share Document