scholarly journals An Experimental Study on the Improvement of Fuel Economy and Reduction of Harmful Emissions by Mixing the Combustion Accelerator in the Intake Manifold of an Internal Combustion Engine

2021 ◽  
Vol 29 (2) ◽  
pp. 153-156
Author(s):  
Gyusung Kim ◽  
Sungcheon Park
Author(s):  
Michael R. Buchman ◽  
W. Brett Johnson ◽  
Amos G. Winter

Turbocharging can provide a cost effective means for increasing the power output and fuel economy of an internal combustion engine. A turbocharger added to an internal combustion engine consists of a coupled turbine and compressor. Currently, turbocharging is common in multi-cylinder engines, but it is not commonly used on single-cylinder engines due to the phase mismatch between the exhaust stroke (when the turbocharger is powered) and the intake stroke (when the engine intakes the compressed air). The proposed method adds an air capacitor, an additional volume in series with the intake manifold, between the turbocharger compressor and the engine intake, to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. This research builds on previous work where it was shown experimentally that a power gain of 29% was achievable and that analytically a power gain of 40–60% was possible using a turbocharger and air capacitor system. The goal of this study is to further analyze the commercial viability of this technology by analyzing the effect of air capacitor turbocharging on emissions, fuel economy, and power density. An experiment was built and conducted that looked at how air capacitor sizing affected emissions, fuel economy, and the equivalence ratio. The experimental data was then used to calibrate a computational model built in Ricardo Wave. Finally this model was used to evaluate strategies to further improve the performance of a single cylinder diesel turbocharged engine with an air capacitor.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8151
Author(s):  
Andyn Omanovic ◽  
Norbert Zsiga ◽  
Patrik Soltic ◽  
Christopher Onder

The electric hybridization of vehicles with an internal combustion engine is an effective measure to reduce CO2 emissions. However, the identification of the dimension and the sufficient complexity of the powertrain parts such as the engine, electric machine, and battery is not trivial. This paper investigates the influence of the technological advancement of an internal combustion engine and the sizing of all propulsion components on the optimal degree of hybridization and the corresponding fuel consumption reduction. Thus, a turbocharged and a naturally aspirated engine are both modeled with the additional option of either a fixed camshaft or a fully variable valve train. All models are based on data obtained from measurements on engine test benches. We apply dynamic programming to find the globally optimal operating strategy for the driving cycle chosen. Depending on the engine type, a reduction in fuel consumption by up to 32% is achieved with a degree of hybridization of 45%. Depending on the degree of hybridization, a fully variable valve train reduces the fuel consumption additionally by up to 9% and advances the optimal degree of hybridization to 50%. Furthermore, a sufficiently high degree of hybridization renders the gearbox obsolete, which permits simpler vehicle concepts to be derived. A degree of hybridization of 65% is found to be fuel optimal for a vehicle with a fixed transmission ratio. Its fuel economy diverges less than 4% from the optimal fuel economy of a hybrid electric vehicle equipped with a gearbox.


2015 ◽  
Vol 792 ◽  
pp. 553-558
Author(s):  
Leonid Plotnikov ◽  
Boris Zhilkin ◽  
Yuriy Brodov

The results of experimental study of the exhaust process of the piston internal combustion engine are presented in the article. A method for improving the cleaning of the cylinder from the exhaust gas on the basis of the effect the ejection is proposed in the paper. Dependences of change of the instantaneous gas velocity on the angle of rotation of the crankshaft in the exhaust tract of a different configuration (with ejector and without it) are listed in the article.


2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988625 ◽  
Author(s):  
Lijun Hao ◽  
Chunjie Wang ◽  
Hang Yin ◽  
Chunxiao Hao ◽  
Haohao Wang ◽  
...  

In order to estimate the light-duty vehicle fuel economy at high-altitude areas, the coast-down tests of a passenger car on level road were conducted at different elevations, and the coast-down resistance coefficients were calculated. Furthermore, a fuel economy model for a light-duty vehicle adopting backward simulation method was developed, and it mainly consists of vehicle dynamic model, internal combustion engine model, transmission model, and differential model. The internal combustion engine model consists of the brake-specific fuel consumption maps as functions of engine torque and engine speed, and the brake-specific fuel consumption map near sea level was constructed based on engine experimental data, and the brake-specific fuel consumption maps at high altitudes were calculated by GT-Power Modeling of the internal combustion engine. The fuel consumption rate was calculated from the brake-specific fuel consumption maps and brake power and used to calculate the fuel economy of the light-duty vehicle. The model predicted fuel consumption data met well with the test results, and the model prediction errors are within 5%.


2010 ◽  
Vol 3 (2) ◽  
pp. 95-100 ◽  
Author(s):  
“Moh’d Sami” Ashhab ◽  
Mahmoud Abu-Zaid ◽  
Odai Baqaeen ◽  
Maraam Khdair ◽  
Eyas Adel

Sign in / Sign up

Export Citation Format

Share Document