scholarly journals Sistem Pendukung Keputusan Kredit Usaha Rakyat PT. Bank Rakyat Indonesia Unit Kaliangkrik Magelang

2015 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Agung Nugroho ◽  
Kusrini Kusrini ◽  
M. Rudyanto Arief

Banyak faktor dan variabel yang mempengaruhi risiko kredit dalam pengambilan keputusan pada permasalahan Kredit Usaha Rakyat (KUR). Faktor-faktor yang digunakan sebagai dasar penilaian Kredit Usaha Rakyat pada PT.Bank Rakyat Indonesia Unit Kaliangkrik menggunakan prinsip dasar yang dikenal dengan prinsip “5 of Credit” yaitu Character, Capacity, Capital, Condition dan Collateral. Dari factor-faktor yang digunakan sebagai dasar penilaian kredit, digunakan metode Mining Classification Rule dalam membuat Sistem Pendukung Keputusan pemberian KUR. Terdapat beberapa algoritma yang dapat digunakan dalam data mining untuk metode klasifikasi salah satunya adalah algoritma k-nearest neightbor. Konsep sistem pendukung keputusan pemberian KUR ini dirancang dapat melakukan klasifikasi terhadap objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan objek tersebut dan memberikan solusi nasabah yang layak menerima KUR berdasarkan masukan dari user dengan menggunakan metode k-nearest neighbors (knn). Data-data transaksi pembayaran nasabah lama akan dijadikan sebagai data training dimana sebelumnya akan ditentukan kelasnya terlebih dahulu. Penentuan kelas dilakukan dengan proses klasifikasi data berdasarkan kategori status nasabah sesuai jumlah tunggakan pembayaran kreditnya. Dari hasil perhitungan kemiripan kasus antara data calon nasabah baru dengan nasabah lama atau data training menggunakan algoritma K-Nearest Neighbor, hasil dengan nilai tertinggi akan dijadikan acuan seorang decision maker dalam mengambil keputusan.Many factors and variables that affect credit risk in decision-making on issues People's Business Credit (KUR). The factors are used as the basis of assessment of the People's Business Credit Unit at PT Bank Rakyat Indonesia Kaliangkrik using basic principle known as the principle of "5 of Credit" ie Character, Capacity, Capital, Collateral Condition and. Of the factors that are used as a basis for credit assessment, Classification Rule Mining method used in making the administration of KUR Decision Support Systems. There are several algorithms that can be used in data mining for classification methods one of which is the k-nearest algorithm neightbor. The concept of the provision of decision support system is designed KUR can perform the classification of objects based on distance learning data that is closest to the object and provide a viable solution customers receive KUR based on input from the user by using the k-nearest neighbors (KNN). Payment transaction data will be used as a customer long training data which will be determined prior to first class. Grading is done with the data classification process based on customer status categories according to the amount of credit outstanding payments. From the calculation of the similarity between the case of data with prospective new customers or old customers training data using the K-Nearest Neighbor algorithm, the results with the highest scores will be used as a reference to a decision maker in making decisions.

Respati ◽  
2018 ◽  
Vol 13 (2) ◽  
Author(s):  
Eri Sasmita Susanto ◽  
Kusrini Kusrini ◽  
Hanif Al Fatta

INTISARIPenelitian ini difokuskan untuk mengetahui uji kelayakan prediksi kelulusan mahasiswa Universitas AMIKOM Yogyakarta. Dalam hal ini penulis memilih algoritma K-Nearest Neighbors (K-NN) karena K-Nearest Neighbors (K-NN) merupakan algoritma  yang bisa digunakan untuk mengolah data yang bersifat numerik dan tidak membutuhkan skema estimasi parameter perulangan yang rumit, ini berarti bisa diaplikasikan untuk dataset berukuran besar.Input dari sistem ini adalah Data sampel berupa data mahasiswa tahun 2014-2015. pengujian pada penelitian ini menggunakn dua pengujian yaitu data testing dan data training. Kriteria yang digunakan dalam penelitian ini adalah , IP Semester 1-4, capaian SKS, Status Kelulusan. Output dari sistem ini berupa hasil prediksi kelulusan mahasiswa yang terbagi menjadi dua yaitu tepat waktu dan kelulusan tidak tepat waktu.Hasil pengujian menunjukkan bahwa Berdasarkan penerapan k=14 dan k-fold=5 menghasilkan performa yang terbaik dalam memprediksi kelulusan mahasiswa dengan metode K-Nearest Neighbor menggunakan indeks prestasi 4 semester dengan nilai akurasi= 98,46%, precision= 99.53% dan recall =97.64%.Kata kunci: Algoritma K-Nearest Neighbors, Prediksi Kelulusan, Data Testing, Data Training ABSTRACTThis research is focused on knowing the feasibility test of students' graduation prediction of AMIKOM University Yogyakarta. In this case the authors chose the K-Nearest Neighbors (K-NN) algorithm because K-Nearest Neighbors (K-NN) is an algorithm that can be used to process data that is numerical and does not require complicated repetitive parameter estimation scheme, this means it can be applied for large datasets.The input of this system is the sample data in the form of student data from 2014-2015. test in this research use two test that is data testing and training data. The criteria used in this study are, IP Semester 1-4, achievement of SKS, Graduation Status. The output of this system in the form of predicted results of student graduation which is divided into two that is timely and graduation is not timely.The result of the test shows that based on the application of k = 14 and k-fold = 5, the best performance in predicting the students' graduation using K-Nearest Neighbor method uses 4 semester achievement index with accuracy value = 98,46%, precision = 99.53% and recall = 97.64%.Keywords: K-Nearest Neighbors Algorithm, Graduation Prediction, Testing Data, Training Data


2005 ◽  
Vol 15 (02) ◽  
pp. 101-150 ◽  
Author(s):  
GODFRIED TOUSSAINT

In the typical nonparametric approach to classification in instance-based learning and data mining, random data (the training set of patterns) are collected and used to design a decision rule (classifier). One of the most well known such rules is the k-nearest-neighbor decision rule (also known as lazy learning) in which an unknown pattern is classified into the majority class among its k nearest neighbors in the training set. Several questions related to this rule have received considerable attention over the years. Such questions include the following. How can the storage of the training set be reduced without degrading the performance of the decision rule? How should the reduced training set be selected to represent the different classes? How large should k be? How should the value of k be chosen? Should all k neighbors be equally weighted when used to decide the class of an unknown pattern? If not, how should the weights be chosen? Should all the features (attributes) we weighted equally and if not how should the feature weights be chosen? What distance metric should be used? How can the rule be made robust to overlapping classes or noise present in the training data? How can the rule be made invariant to scaling of the measurements? How can the nearest neighbors of a new point be computed efficiently? What is the smallest neural network that can implement nearest neighbor decision rules? Geometric proximity graphs such as Voronoi diagrams and their many relatives provide elegant solutions to these problems, as well as other related data mining problems such as outlier detection. After a non-exhaustive review of some of the classical canonical approaches to these problems, the methods that use proximity graphs are discussed, some new observations are made, and open problems are listed.


Author(s):  
I Wayan Agus Surya Darma

Balinese script is an important aspect that packs the Balinese culture from time to time which continues to experience development along with technological advances. Balinese script consists of three types (1) Wrésastra, (2) Swalalita and (3) Modre which have different types of characters. The Wrésastra and Swalalita script are Balinese scripts which grouped into the script criteria that are used to write in the field of everyday life. In this research, the zoning method will be implemented in the feature extraction process to produce special features owned by Balinese script. The results of the feature extraction process will produce special features owned by Balinese script which will be used in the classification process to recognize the character of Balinese script. Special features are produced using the zoning method, it will divide the image characters area of ??Balinese scripts into several regions, to enrich the features of each Balinese script. The result of feature extractions is stored as training data that will be used in the classification process. K-Nearest Neighbors is implemented in the special feature classification process that is owned by the character of Balinese script. Based on the results of the test, the highest level of accuracy was obtained using the value K=3 and reference=10 with the accuracy of Balinese script recognition 97.5%.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 779
Author(s):  
Ruriko Yoshida

A tropical ball is a ball defined by the tropical metric over the tropical projective torus. In this paper we show several properties of tropical balls over the tropical projective torus and also over the space of phylogenetic trees with a given set of leaf labels. Then we discuss its application to the K nearest neighbors (KNN) algorithm, a supervised learning method used to classify a high-dimensional vector into given categories by looking at a ball centered at the vector, which contains K vectors in the space.


2019 ◽  
Vol 1 (1) ◽  
pp. 1-6
Author(s):  
Endang Wahyu Handamari

Determination of methods or contraception tool used by acceptors to support the Family Planning (“Keluarga Berencana”) is a problematic. In choosing methods or contraception tool, the acceptor must consider several factors, namely health factor, partner factor, and contraceptive method. Each method or contraception tool which is used has its advantages or disadvantages. Although it has been considering the advantages and disadvantages, it is still difficult to control fertility safely and effectively. Consequently acceptor change the method or a contraception tool that is used more than once. In order acceptors get the appropriate contraception tool then the patterns of changing in the usage of effective methods or contraception tool is determined. One of the methods that can be used to look for the patterns of changing in the usage of contraception tool is data mining. Data mining is an interesting pattern extraction of large amounts of data. A pattern is said to be interesting if the pattern is not trivial, implicit, previously unknown, and useful. The patterns presented should be easy to understand, can be applied to data that will be predicted with a certain degree, useful, and new. The early stage before applying data mining is using k nearest neighbors algorithm to determine the factors shortest distance selecting the contraception tool. The next step is applying data mining to usage changing data of method or contraception tool of family planning acceptors which is expected to dig up information related to acceptor behavior pattern in using the method or contraception tool. Furthermore, from the formed pattern, it can be used in decision making regarding the usage of effective contraception tool. The results obtained from this research is the k nearest neighbors by using the Euclidean distance can be used to determine the similarity of attributes owned by the acceptors of Family Planning to the training data is already available. Based on available training data, it can be determined the usage pattern of contraceptiion tool with the concept of data mining, where the acceptors of Family Planning are given a recommendation if the pattern is on the training data pattern. Conversely, if the pattern is none match, then the system does not provide recommendations of contraception tool which should be used.


Teknika ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 96-103
Author(s):  
Mohammad Farid Naufal ◽  
Selvia Ferdiana Kusuma ◽  
Kevin Christian Tanus ◽  
Raynaldy Valentino Sukiwun ◽  
Joseph Kristiano ◽  
...  

Kondisi pandemi global Covid-19 yang muncul diakhir tahun 2019 telah menjadi permasalahan utama seluruh negara di dunia. Covid-19 merupakan virus yang menyerang organ paru-paru dan dapat mengakibatkan kematian. Pasien Covid-19 banyak yang telah dirawat di rumah sakit sehingga terdapat data citra chest X-ray paru-paru pasien yang terjangkit Covid-19. Saat ini sudah banyak peneltian yang melakukan klasifikasi citra chest X-ray menggunakan Convolutional Neural Network (CNN) untuk membedakan paru-paru sehat, terinfeksi covid-19, dan penyakit paru-paru lainnya, namun belum ada penelitian yang mencoba membandingkan performa algoritma CNN dan machine learning klasik seperti Support Vector Machine (SVM), dan K-Nearest Neighbor (KNN) untuk mengetahui gap performa dan waktu eksekusi yang dibutuhkan. Penelitian ini bertujuan untuk membandingkan performa dan waktu eksekusi algoritma klasifikasi K-Nearest Neighbors (KNN), Support Vector Machine (SVM), dan CNN  untuk mendeteksi Covid-19 berdasarkan citra chest X-Ray. Berdasarkan hasil pengujian menggunakan 5 Cross Validation, CNN merupakan algoritma yang memiliki rata-rata performa terbaik yaitu akurasi 0,9591, precision 0,9592, recall 0,9591, dan F1 Score 0,959 dengan waktu eksekusi rata-rata sebesar 3102,562 detik.


1998 ◽  
Vol 28 (8) ◽  
pp. 1107-1115 ◽  
Author(s):  
Matti Maltamo ◽  
Annika Kangas

In the Finnish compartmentwise inventory systems, growing stock is described with means and sums of tree characteristics, such as mean height and basal area, by tree species. In the calculations, growing stock is described in a treewise manner using a diameter distribution predicted from stand variables. The treewise description is needed for several reasons, e.g., for predicting log volumes or stand growth and for analyzing the forest structure. In this study, methods for predicting the basal area diameter distribution based on the k-nearest neighbor (k-nn) regression are compared with methods based on parametric distributions. In the k-nn method, the predicted values for interesting variables are obtained as weighted averages of the values of neighboring observations. Using k-nn based methods, the basal area diameter distribution of a stand is predicted with a weighted average of the distributions of k-nearest neighbors. The methods tested in this study include weighted averages of (i)Weibull distributions of k-nearest neighbors, (ii)distributions of k-nearest neighbors smoothed with the kernel method, and (iii)empirical distributions of the k-nearest neighbors. These methods are compared for the accuracy of stand volume estimation, stand structure description, and stand growth prediction. Methods based on the k-nn regression proved to give a more accurate description of the stand than the parametric methods.


2020 ◽  
Vol 5 (1) ◽  
pp. 33
Author(s):  
Rozzi Kesuma Dinata ◽  
Fajriana Fajriana ◽  
Zulfa Zulfa ◽  
Novia Hasdyna

Pada penelitian ini diimplementasikan algoritma K-Nearest Neighbor dalam pengklasifikasian Sekolah Menengah Pertama/Sederajat berdasarkan peminatan calon siswa. Tujuan penelitian ini adalah untuk memudahkan pengguna dalam menemukan sekolah SMP/sederajat berdasarkan 8 kriteria sekolah yaitu akreditasi, fasilitas ruangan, fasilitas olah raga, laboratorium, ekstrakulikuler, biaya, tingkatan kelas dan waktu belajar. Adapun data yang digunakan dalam penelitian ini didapatkan dari Dinas Pendidikan Pemuda dan Olahraga Kabupaten Bireuen. Hasil penelitian dengan menggunakan K-NN dan pendekatan Euclidean Distance dengan k=3, diperoleh nilai precision sebesar 63,67%, recall 68,95% dan accuracy sebesar 79,33% .


Author(s):  
Novan Wijaya

Abstrak Apel merupakan salah satu jenis buah yang unggul dan sangat digemari dan dikonsumsi masyarakat. Buah apel memiliki banyak varietas yang dapat dibedakan berdasarkan warna dan bentuk buah. Fitur Hue Saturation Value (HSV) dan Local Binary Patern (LBP) digunakan pada penelitian ini sebagai ekstraksi fitur warna dan bentuk pada buah yang kemudian akan dijadikan ciri dari warna dan bentuk buah apel yang akan diteliti. Metode K-Nearest Neighbor (K-NN) adalah salah satu metode penelitian pada kecerdasan buatan yang digunakan dalam penelitian ini untuk mengklasifikasikan nilai-nilai yang didapat dari hasil ekstraksi fitur HSV dan LBP. Data yang digunakan pada penelittian ini adalah 800 citra, yang terdiri dari 600 citra latih dan 200 citra uji. Hasil evaluasi yang didapat dari metode K-Nearest Neighbor ini untuk Secara keseluruhan dapat dilihat bahwa rata-rata nilai Precision yang di dapat sebesar 94%, Recall sebesar 100%, dan Accuracy sebesar 94 %.Kata kunci: Hue Saturation Value, Local Binary Patern, K-Nearest Neighbor  


Author(s):  
Wahyu Wijaya Widiyanto ◽  
Eko Purwanto ◽  
Kusrini Kusrini

Proses klasifikasi kualitas mutu buah mangga dengan cara konvensional menggunakan mata manusia memiliki kelemahan di antaranya membutuhkan tenaga lebih banyak untuk memilah, anggapan mutu kualitas buah mangga antar manusia yang berbeda, tingkat konsistensi manusia dalam menilai kualitas mutu buah mangga yang tidak menjamin valid karena manusia dapat mengalami kelelahan. Penelitian ini bertujuan untuk klasifikasi kualitas mutu buah mangga ke dalam tiga kelas mutu yaitu kelas Super, A, dan B dengan computer vision dan algoritma k-Nearest Neighbor. Hasil pengujian menggunakan jumlah k tetangga 9 menunjukan tingkat akurasi sebesar 88,88%.Kata-kata kunci— Klasifikasi, GLCM, K-Nearest Neighbour, Mangga


Sign in / Sign up

Export Citation Format

Share Document