scholarly journals Steady State Analysis of a Medium/Low Voltage Distribution Grid Behavior with PV System Penetration

Author(s):  
A.R. Piccini ◽  
M. A. Tamashiro ◽  
G.C. Guimarães ◽  
A.R. Rodrigues ◽  
C.S. Barbosa
Author(s):  
M. Venkatesan ◽  
R. Rajeswari ◽  
M. Kaliyamoorthy ◽  
M. Srithar

The transient and steady state analysis of Modified Three Phase Multilevel Inverter (MMLI) for Photovoltaic (PV) system fed from single DC input is presented in this paper. The transient and Steady state conditions of modified three phase multilevel inverter are analyzed using Proportional Integral (PI) and Fuzzy Logic Controller (FLC) with change in irradiance level of PV panels. The three phase multilevel inverter  is designed with reduce number of power semiconductor switches, components, single DC input and effectively controlled by using Space Vector Pulse width Modulation technique (SVPWM).  The obtained results are validated using MATLAB/ Simulink.Finaly, semiconductor switches and componets utilization of MMLI is compared with other similar topologies.


Author(s):  
Abhinav Vinod Deshpande

In this research paper, a novel high step up dc-dc converter with a coupled inductor and voltage doubler circuits is proposed. The converter achieves a high step up voltage gain with an appropriate duty ratio and low voltage stress on the power switches. Also, the energy which is stored in the leakage inductor of the coupled inductor can be recycled to the output. The operating principles and the steady state analysis of the proposed converter are discussed in detail. Finally, a prototype circuit of the proposed converter is implemented in the laboratory in order to verify the performance of the proposed converter.


Author(s):  
Thomas Y.S. Lee

Models and analytical techniques are developed to evaluate the performance of two variations of single buffers (conventional and buffer relaxation system) multiple queues system. In the conventional system, each queue can have at most one customer at any time and newly arriving customers find the buffer full are lost. In the buffer relaxation system, the queue being served may have two customers, while each of the other queues may have at most one customer. Thomas Y.S. Lee developed a state-dependent non-linear model of uncertainty for analyzing a random polling system with server breakdown/repair, multi-phase service, correlated input processes, and single buffers. The state-dependent non-linear model of uncertainty introduced in this paper allows us to incorporate correlated arrival processes where the customer arrival rate depends on the location of the server and/or the server's mode of operation into the polling model. The author allows the possibility that the server is unreliable. Specifically, when the server visits a queue, Lee assumes that the system is subject to two types of failures: queue-dependent, and general. General failures are observed upon server arrival at a queue. But there are two possibilities that a queue-dependent breakdown (if occurs) can be observed; (i) is observed immediately when it occurs and (ii) is observed only at the end of the current service. In both cases, a repair process is initiated immediately after the queue-dependent breakdown is observed. The author's model allows the possibility of the server breakdowns/repair process to be non-stationary in the number of breakdowns/repairs to reflect that breakdowns/repairs or customer processing may be progressively easier or harder, or that they follow a more general learning curve. Thomas Y.S. Lee will show that his model encompasses a variety of examples. He was able to perform both transient and steady state analysis. The steady state analysis allows us to compute several performance measures including the average customer waiting time, loss probability, throughput and mean cycle time.


Sign in / Sign up

Export Citation Format

Share Document