Energy saving by power electronics: towards a new concept of renewable source

Author(s):  
G. Vitale
2021 ◽  
Vol 11 (7) ◽  
pp. 3058
Author(s):  
Elizaveta Liivik ◽  
Yongheng Yang ◽  
Ariya Sangwongwanich ◽  
Frede Blaabjerg

If we look at the history of renewable energy sources (RESs), how it all began, and how rapidly they continue to develop, it can be argued that one of the main reasons is due to the rapid improvements in power electronics technology in interfacing the renewable source to the grid [...]


2018 ◽  
Vol 12 (2) ◽  
pp. 175-178
Author(s):  
Shinichi Shikata ◽  

To achieve a 50% worldwide reduction of CO2by the middle of this century, development of energy saving power device technology using wide bandgap materials is urgently needed. Diamond is receiving increasing attention as a next generation material for wide bandgap semiconductors owing to its extreme characteristics. Research studies investigating large wafers, low resistivity, and low dislocation have accelerated. This study targets the use of wafers for power electronics applications, and the required machining technologies for diamond, including wafer shaping, slicing, and surface finishing, are introduced.


2001 ◽  
Vol 32 (3) ◽  
pp. 133-141 ◽  
Author(s):  
Gerrit Antonides ◽  
Sophia R. Wunderink

Summary: Different shapes of individual subjective discount functions were compared using real measures of willingness to accept future monetary outcomes in an experiment. The two-parameter hyperbolic discount function described the data better than three alternative one-parameter discount functions. However, the hyperbolic discount functions did not explain the common difference effect better than the classical discount function. Discount functions were also estimated from survey data of Dutch households who reported their willingness to postpone positive and negative amounts. Future positive amounts were discounted more than future negative amounts and smaller amounts were discounted more than larger amounts. Furthermore, younger people discounted more than older people. Finally, discount functions were used in explaining consumers' willingness to pay for an energy-saving durable good. In this case, the two-parameter discount model could not be estimated and the one-parameter models did not differ significantly in explaining the data.


2018 ◽  
pp. 143-149 ◽  
Author(s):  
Ruijie CHENG

In order to further improve the energy efficiency of classroom lighting, a classroom lighting energy saving control system based on machine vision technology is proposed. Firstly, according to the characteristics of machine vision design technology, a quantum image storage model algorithm is proposed, and the Back Propagation neural network algorithm is used to analyze the technology, and a multi­feedback model for energy­saving control of classroom lighting is constructed. Finally, the algorithm and lighting model are simulated. The test results show that the design of this paper can achieve the optimization of the classroom lighting control system, different number of signals can comprehensively control the light and dark degree of the classroom lights, reduce the waste of resources of classroom lighting, and achieve the purpose of energy saving and emission reduction. Technology is worth further popularizing in practice.


Sign in / Sign up

Export Citation Format

Share Document