scholarly journals Solar Thermal Energy For Buildings – Current State and Perspectives

Author(s):  
Tamara Bajc ◽  
◽  
Milan Gojak

Almost 50% of final energy consumption in Europe and worldwide is addressed to thermal energy, which is significantly higher than energy needs for electricity for lighting and electrical appliances and for traffic. Building sector takes a significant share (about 40 %) in total primary energy consumption. Limited amounts of fossil fuels, their negative impact on environment, high and unstable prices and import dependency of fuels caused intensive growth and usage of solar thermal energy in the world. Solar heating and cooling are the most important solar sector worldwide, where installed solar system power is about 500 GWth and it is higher than PV system power and also the power of solar thermal plants. Today, according to the total installed collector capacity, China dominates on first place, then Europe, while United States comes right after, according to the SHC Agency data for 2016. With a district solar thermal plant in municipality Pančevo, Republic of Serbia also has its place at a world solar thermal map. This paper presents a review of different sizes, number, installed power and types of solar collectors and other characteristics of built solar thermal systems worldwide. Potential for possible usage of solar thermal system was identified and technological and other challenges and perspectives for future growth in the field of solar thermal energy were discussed.

Author(s):  
Nelson Fumo ◽  
Louay M. Chamra ◽  
Vicente Bortone

Integrated energy systems combine distributed power generation with thermally activated components to use waste heat, improving the overall energy efficiency, and making better use of fuels. Use of solar thermal energy is attractive to improve combined cooling, heating, and power (CCHP) systems performance, particularly during summer time since the cooling load coincides very well with solar energy availability. Limitation of the use of solar systems is mainly related to high first cost and large surface area for solar energy harvesting. Therefore, solar thermal CCHP systems seem to be an alternative to increase the use of solar thermal energy as a means to increase energy systems overall efficiency and reduce greenhouse gases (GHGs) emissions. This study focuses on the use of solar collectors in CCHP systems in order to reduce PEC and emission of CO2 in office buildings. By using a base CCHP system, the energy and economic analysis are presented as the contribution of the solar system from the baseline. For comparison purposes, the analysis is made for the cities of Minneapolis (MN), Chicago (IL), New York (NY), Atlanta (GA), and Fort Worth (TX). Results show that solar thermal CCHP systems can effectively reduce the fuel energy consumption from the boiler. The potential of solar collectors in CCHP systems to reduce PEC and CO2 emission increases with the cooling demand; while the effectiveness of solar collectors to reduce primary energy consumption and CO2 emission, and the ability of the system to pay by itself from fuel savings, decreases with the number of solar collectors.


Author(s):  
N. Fumo ◽  
V. Bortone ◽  
J. C. Zambrano

The Energy Information Administration of the United States Department of Energy projects that more than 80% of the energy consumption of the U.S. by 2035 will come from fossil fuels. This projection should be the fuel to promote projects related to renewable energy in order to reduce energy consumption from fossil fuels to avoid their undesirable consequences such as carbon dioxide emissions. Since solar radiation match pretty well building cooling demands, solar cooling systems will be an important factor in the next decades to meet or exceed the green gases reduction that will be demanded by the society and regulations in order to mitigate environmental consequences such as global warming. Solar energy can be used as source of energy to produce cooling through different technologies. Solar thermal energy applies to technology such as absorption chillers and desiccant cooling, while electricity from solar photovoltaic can be used to drive vapor compression electric chillers. This study focuses on the comparison of a Solar Thermal Cooling System that uses an absorption chiller driven by solar thermal energy, and a Solar Photovoltaic Cooling System that uses a vapor compression system (electric chiller) driven by solar electricity (solar photovoltaic system). Both solar cooling systems are compared against a standard air cooled cooling system that uses electricity from the grid. The models used in the simulations to obtain the results are described in the paper along with the parameters (inputs) used. Results are presented in two figures. Each figure has one curve for the Solar Thermal Cooling System and one for the Solar Photovoltaic Cooling System. One figure allows estimation of savings calculated based the net present value of energy consumption cost. The other figure allows estimating primary energy consumption reduction and emissions reduction. Both figures presents the result per ton of refrigeration and as a function of area of solar collectors or/and area of photovoltaic modules. This approach to present the result of the simulations of the systems makes these figures quite general. This means that the results can be used to compare both solar cooling systems independently of the cooling demand (capacity of the system), as well as allow the analysis for different sizes of the solar system used to harvest the solar energy (collectors or photovoltaic modules).


Author(s):  
Rajeevan Ratnanandan ◽  
Jorge E. González

The paper presents a study of the performance of an active solar thermal heating and cooling system for small buildings. The work is motivated by the need for finding sustainable alternatives for building applications that are climate adaptable. The energy demand for heating and cooling needs in residential and light commercial buildings in mid-latitudes represent more than 50% of the energy consumed annually by these buildings. Solar thermal energy represents an untapped opportunity to address this challenge with sustainable solutions. Direct heating could be a source for space heating and hot water, and for heat operated cooling systems to provide space cooling. However, a key limitation in mainstreaming solar thermal for heating and cooling has been the size of thermal storage to implement related technologies. We address this issue by coupling a Phase Change Material (PCM) with an adsorption chiller and a radiant flooring system for year round solar thermal energy utilization in Northern climates. The adsorption chiller allows for chill water production driven by low temperature solar thermal energy for summer cooling, and low temperature radiant heating provides for space heating in winter conditions, while hot water demand is supplied year round. These active systems are operated by high performance solar thermal collectors. The PCM has been selected to match temperatures requirements of the adsorption chiller, and the tank was designed to provide three levels of temperatures for all applications; cooling, heating, and hot water. The material selection is paraffin sandwiched with a graphite matrix to increase the conductivity. The specific objective of the preset work is to provide a system optimization of this active system. The system is represented by a series of mathematical models for each component; PCM tank with heat exchangers, the adsorption machine, the radiant floor, and the solar thermal collectors (Evacuated tubular collectors). The PCM modeling allows for sensible heating, phase change process, and superheating. Parametric simulations are conducted for a defined small building in different locations in US with the objective of defining design parameters for; optimal solar collector array, sizing of the PCM tank, and performance of the adsorption machine and radiant heating system. The monthly and annual solar fractions of the system are also reported.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1582 ◽  
Author(s):  
Conti ◽  
Schito ◽  
Testi

This paper analyzes the use of hybrid photovoltaic/thermal (PVT) collectors in nearly zero-energy buildings (NZEBs). We present a design methodology based on the dynamic simulation of the whole energy system, which includes the building energy demand, a reversible heat pump as generator, the thermal storage, the power exchange with the grid, and both thermal and electrical energy production by solar collectors. An exhaustive search of the best equipment sizing and design is performed to minimize both the total costs and the non-renewable primary energy consumption over the system lifetime. The results show that photovoltaic/thermal technology reduces the non-renewable primary energy consumption below the nearly zero-energy threshold value, assumed as 15 kWh/(m2·yr), also reducing the total costs with respect to a non-solar solution (up to 8%). As expected, several possible optimal designs exist, with an opposite trend between energy savings and total costs. In all these optimal configurations, we figure out that photovoltaic/thermal technology favors the production of electrical energy with respect to the thermal one, which mainly occurs during the summer to meet the domestic hot water requirements and lower the temperature of the collectors. Finally, we show that, for a given solar area, photovoltaic/thermal technology leads to a higher reduction of the non-renewable primary energy and to a higher production of solar thermal energy with respect to a traditional separate production employing photovoltaic (PV) modules and solar thermal (ST) collectors.


Author(s):  
Alejandro Ayala ◽  
Llanos Mora-López ◽  
Mariano Sidrach-de-Cardonaa

This article presents the work carried out to implement the use of solar thermal energy in a rehabilitation clinic located in southern Spain. The objective is to reduce the consumption of fossil fuels and improve energy sustainability and efficiency of clinical current processes and contribute to a better use of the abundant solar resources in this area. We have developed a strategy that allows better utilization of production of solar collectors. In the first phase we have designed a solar thermal system for domestic hot water supply of 30 double rooms (half the current capacity of the center) and pool heating. This pool is outdoors, with a capacity of 160 m3 and is used for medical treatment during the months of May to September. The management of the use of water heated in the collectors during this period has been established to give priority to the pool heating and the use of the excess energy to supply the hot water system. We have simulated the system performance using the F-char method. The results show that the designed system is able to cover 100% of the energy needs of the pool and cover 60% of the hot water needs of the 30 rooms. It can be stated that the use of this type of energy in facilities such as the one described in this paper allows maximizing the thermal energy produced and represent a significant saving of fossil fuels.


2019 ◽  
Author(s):  
Tedi Ahmad Bahtiar ◽  
Amalia Nurjannah ◽  
Maryoko Hadi

Until 2016, fossil fuels as primary energy are included in the top three most widely used. The process of combustion of fossil fuels causes the release of tremendous amounts of carbon to the atmosphere. In the atmosphere, carbon turns into carbon dioxide (CO2) or often called greenhouse gas. Greenhouse gas has a negative impact on the environment: direct effects like acid rains, and indirect effects like global warming. In Indonesia, the buildings used 37.8 percent of the total national energy consumption and are directly responsible for 37.8 percent of CO2 emission. This study aims to discuss the impact of reducing energy consumption used by the household on the risk of greenhouse gases. A computer simulation was used to calculate energy consumption in buildings. A conversion method from building energy consumption to the amount of CO2 emission was used to determine the level of reduction of greenhouse gas risk. Some parameters were evaluated, such as building’s material (e.g., roof, wall) and building geometry. It was found that the energy consumption savings were around 66.1 percent and operational CO2 savings were obtained 923 kg/year.


2020 ◽  
Vol 12 (5) ◽  
pp. 1921 ◽  
Author(s):  
Makiko Ukai ◽  
Masaya Okumiya ◽  
Hideki Tanaka

A desiccant air handling unit is one of the major types of dehumidification handling systems and requires hot water or hot air to regenerate sorption materials. If solar thermal energy is used as the heat source for regeneration, in general, a backup electrical heater, backup boiler, or combined heat and power (CHP) is installed in order to maintain a stable hot water supply. In this study, effective control is proposed for a desiccant air handling system that uses solar thermal energy (flexible control), and its energy performance is compared to that of a traditional control (the fixed control) through a system simulation. The diurnal behavior shows that the system with a fixed control without a backup boiler cannot process the latent load properly (28 GJ of unprocessed latent load for July and August). On the other hand, the system with a flexible control without a backup boiler is able to process required latent heat load. Based on the fact that the fixed control needs a backup boiler to process the latent load, the system with a fixed control with a backup boiler is considered for the energy performance comparison. The simulation results show that the primary energy-based coefficient of performance (hereafter, COP) of the system with a flexible control without a backup boiler reaches 1.56. On the other hand, the primary energy-based COP of the system with a fixed control with a backup boiler reaches only 1.43. This proves that the flexible control contributes to the higher energy performance of the system and maximizes the use of solar thermal energy more than the fixed control.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
N. Fumo ◽  
V. Bortone ◽  
J. C. Zambrano

The Energy Information Administration of the United States Department of Energy projects that more than 80% of the energy consumption of the U.S. by 2035 will come from fossil fuels. This projection should be the fuel to promote projects related to renewable energy in order to reduce energy consumption from fossil fuels to avoid their undesirable consequences such as carbon dioxide emissions. Since solar radiation match pretty well building cooling demands, solar cooling systems will be an important factor in the next decades to meet or exceed the green gases reduction that will be demanded by the society and regulations in order to mitigate environmental consequences such as global warming. Solar energy can be used as source of energy to produce cooling through different technologies. Solar thermal energy applies to technology such as absorption chillers and desiccant cooling, while electricity from solar photovoltaic can be used to drive vapor compression electric chillers. This study focuses on the comparison of a solar thermal cooling system that uses an absorption chiller driven by solar thermal energy, and a solar photovoltaic cooling system that uses a vapor compression system (electric chiller) driven by solar electricity (solar photovoltaic system). Both solar cooling systems are compared against a standard air cooled cooling system that uses electricity from the grid. The models used in the simulations to obtain the results are described in the paper along with the parameters (inputs) used. Results are presented in two figures. Each figure has one curve for the solar thermal cooling system and one for the solar photovoltaic cooling system. One figure allows estimation of savings calculated based the present value of discounted energy consumption cost. The other figure allows estimating primary energy consumption reduction and emissions reduction. Both figures presents the result per ton of refrigeration and as a function of area of solar collectors or/and area of photovoltaic modules. This approach to present the result of the simulations of the systems makes these figures quite general. This means that the results can be used to compare both solar cooling systems independently of the cooling demand (capacity of the system), as well as allow the analysis for different sizes of the solar system used to harvest the solar energy (collectors or photovoltaic modules).


2019 ◽  
Author(s):  
Karolina Matuszek ◽  
R. Vijayaraghavan ◽  
Craig Forsyth ◽  
Surianarayanan Mahadevan ◽  
Mega Kar ◽  
...  

Renewable energy has the ultimate capacity to resolve the environmental and scarcity challenges of the world’s energy supplies. However, both the utility of these sources and the economics of their implementation are strongly limited by their intermittent nature; inexpensive means of energy storage therefore needs to be part of the design. Distributed thermal energy storage is surprisingly underdeveloped in this context, in part due to the lack of advanced storage materials. Here, we describe a novel family of thermal energy storage materials based on pyrazolium cation, that operate in the 100-220°C temperature range, offering safe, inexpensive capacity, opening new pathways for high efficiency collection and storage of both solar-thermal energy, as well as excess wind power. We probe the molecular origins of the high thermal energy storage capacity of these ionic materials and demonstrate extended cycling that provides a basis for further scale up and development.


Sign in / Sign up

Export Citation Format

Share Document