scholarly journals MENGETAHUI PENGARUH KOEFISIEN VISKOSITAS AKUADES TERHADAP VARIASI DIAMETER TABUNG MENGGUNAKAN ADOBE AUDITION 1.5

2014 ◽  
Vol 2 (2) ◽  
Author(s):  
M Barkah Salim

An experiment had been carried out to determine the viscosity coefficient of aquadest (destilled water) by using Stokes falling ball method. The detection of the balltime during the experiment is done using magnetic induction censor while the reading of induction time data uses adobe audition 1.5 software. By doing this technique the measurement of magnetic ball travel time can minimize the weakness of the ball falling travel measurement which is usually done manually. In this experiment the determination of the coefficient of viscosity by varying the diameter of the tube. The purpose of this experiment was to determine the effect of tube diameter on the viscosity coefficient  Based on the results of the experiment, the bigger the tube diameter is, the smaller the viscosity coefficient will be. If the tube diameter is bigger again, the viscosity coefficient will be flatter. So, viscosity coefficient is always constant for each of the increase of tube diameter.

2019 ◽  
Vol 4 (2) ◽  
pp. 83
Author(s):  
Haris Rosdianto ◽  
Emi Sulistri ◽  
Anis Nazihah Mat Daud

The purpose of this study is to produce an experimental design for determining the viscosity coefficient using jetAudio and Subtitle Edit software, and determining the value of the fluid viscosity coefficient by using this experimental design. In this study, the type of fluid used is packaged cooking oil, and the object used is a magnetic ball. The method proposed by the author to measure the travel time of the magnetic ball in cooking oil is by using the combination of coil sensors, jetAudio, and Subtitle Edit. JetAudio software will record magnetic induction traces as the magnetic ball passes the coils into audio format, Subtitle Edit software is used to determine travel time of the magnetic ball based on jetAudio recording data. The results of this study are jetAudio and Subtitle Edit can be used in fluid viscosity coefficient experiments. The value of the cooking oil viscosity coefficient obtained from this study is 0,561431096 Pa.s.


2001 ◽  
Vol 46 (3) ◽  
pp. 201-211 ◽  
Author(s):  
P.F. Xu ◽  
Z.W. Yu ◽  
H.Q. Tan ◽  
J.X. Ji

1956 ◽  
Vol 46 (4) ◽  
pp. 293-316
Author(s):  
P. G. Gane ◽  
A. R. Atkins ◽  
J. P. F. Sellschop ◽  
P. Seligman

abstract Travel-time data are given at 25 km. intervals between 50 and 500 km. for traverses west, south, east, and north of Johannesburg. These derive from numerous seismograms of Witwatersrand earth tremors taken by means of a triggering technique. The only phases considered to be consistent are those mentioned below, and few signs of a change of velocity with depth were discovered. There were no great differences in the results for the various directions, and the mean results were: P 1 = + 0.24 + Δ / 6.18 sec . S 1 = + 0.37 + Δ / 3.66 sec . P n = + 7.61 + Δ / 8.27 sec . S n = + 11.4 + Δ / 4.73 sec . which give crustal depths of 35.1 and 33.3 km. from P and S data respectively. These depths include about 1.3 km. of superficial material of lower velocity.


1939 ◽  
Vol 29 (3) ◽  
pp. 427-462 ◽  
Author(s):  
Perry Byerly

Summary Least-squares adjustments of observations of waves of the P groups at central and southern California stations are used to obtain the speeds of various waves. Only observations made to tenths of a second are used. It is assumed that the waves have a common velocity for all earthquakes. But the time intercepts of the travel-time curves are allowed to be different for different shocks. The speed of P̄ is found to be 5.61 km/sec.±0.05. The speed for S̄ (founded on fewer data) is 3.26 km/sec. ± 0.09. There are slight differences in the epicenters located by the use of P̄ and S̄ which may or may not be significant. It is suggested that P̄ and S̄ may be released from different foci. The speed of Pn, the wave in the top of the mantle, is 8.02 km/sec. ± 0.05. Intermediate P waves of speeds 6.72 km/sec. ± 0.02 and 7.24 km/sec. ± 0.04 are observed. Only the former has a time intercept which allows a consistent computation of structure when considered a layer wave. For the Berkeley earthquake of March 8, 1937, the accurate determination of depth of focus was possible. This enabled a determination of layering of the earth's crust. The result was about 9 km. of granite over 23 km. of a medium of speed 6.72 km/sec. Underneath these two layers is the mantle of speed 8.02 km/sec. The data from other shocks centering south of Berkeley would not fit this structure, but an assumption of the thickening of the granite southerly brought all into agreement. The earthquakes discussed show a lag of Pn as it passes under the Sierra Nevada. This has been observed before. A reconsideration of the Pn data of the Nevada earthquake of December 20, 1932, together with the data mentioned above, leads to the conclusion that the root of the mountain mass projects into the mantle beneath the surface layers by an amount between 6 and 41 km.


Sign in / Sign up

Export Citation Format

Share Document