scholarly journals Dynamic Sensor Matching for Parallel Point Cloud Data Acquisition

2021 ◽  
Author(s):  
Simone Müller ◽  
Dieter Kranzlmüller

Based on depth perception of individual stereo cameras, spatial structures can be derived as point clouds. The quality of such three-dimensional data is technically restricted by sensor limitations, latency of recording, and insufficient object reconstructions caused by surface illustration. Additionally external physical effects like lighting conditions, material properties, and reflections can lead to deviations between real and virtual object perception. Such physical influences can be seen in rendered point clouds as geometrical imaging errors on surfaces and edges. We propose the simultaneous use of multiple and dynamically arranged cameras. The increased information density leads to more details in surrounding detection and object illustration. During a pre-processing phase the collected data are merged and prepared. Subsequently, a logical analysis part examines and allocates the captured images to three-dimensional space. For this purpose, it is necessary to create a new metadata set consisting of image and localisation data. The post-processing reworks and matches the locally assigned images. As a result, the dynamic moving images become comparable so that a more accurate point cloud can be generated. For evaluation and better comparability we decided to use synthetically generated data sets. Our approach builds the foundation for dynamic and real-time based generation of digital twins with the aid of real sensor data.

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 884
Author(s):  
Chia-Ming Tsai ◽  
Yi-Horng Lai ◽  
Yung-Da Sun ◽  
Yu-Jen Chung ◽  
Jau-Woei Perng

Numerous sensors can obtain images or point cloud data on land, however, the rapid attenuation of electromagnetic signals and the lack of light in water have been observed to restrict sensing functions. This study expands the utilization of two- and three-dimensional detection technologies in underwater applications to detect abandoned tires. A three-dimensional acoustic sensor, the BV5000, is used in this study to collect underwater point cloud data. Some pre-processing steps are proposed to remove noise and the seabed from raw data. Point clouds are then processed to obtain two data types: a 2D image and a 3D point cloud. Deep learning methods with different dimensions are used to train the models. In the two-dimensional method, the point cloud is transferred into a bird’s eye view image. The Faster R-CNN and YOLOv3 network architectures are used to detect tires. Meanwhile, in the three-dimensional method, the point cloud associated with a tire is cut out from the raw data and is used as training data. The PointNet and PointConv network architectures are then used for tire classification. The results show that both approaches provide good accuracy.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


Author(s):  
Y. Hori ◽  
T. Ogawa

The implementation of laser scanning in the field of archaeology provides us with an entirely new dimension in research and surveying. It allows us to digitally recreate individual objects, or entire cities, using millions of three-dimensional points grouped together in what is referred to as "point clouds". In addition, the visualization of the point cloud data, which can be used in the final report by archaeologists and architects, should usually be produced as a JPG or TIFF file. Not only the visualization of point cloud data, but also re-examination of older data and new survey of the construction of Roman building applying remote-sensing technology for precise and detailed measurements afford new information that may lead to revising drawings of ancient buildings which had been adduced as evidence without any consideration of a degree of accuracy, and finally can provide new research of ancient buildings. We used laser scanners at fields because of its speed, comprehensive coverage, accuracy and flexibility of data manipulation. Therefore, we “skipped” many of post-processing and focused on the images created from the meta-data simply aligned using a tool which extended automatic feature-matching algorithm and a popular renderer that can provide graphic results.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ruizhen Gao ◽  
Xiaohui Li ◽  
Jingjun Zhang

With the emergence of new intelligent sensing technologies such as 3D scanners and stereo vision, high-quality point clouds have become very convenient and lower cost. The research of 3D object recognition based on point clouds has also received widespread attention. Point clouds are an important type of geometric data structure. Because of its irregular format, many researchers convert this data into regular three-dimensional voxel grids or image collections. However, this can lead to unnecessary bulk of data and cause problems. In this paper, we consider the problem of recognizing objects in realistic senses. We first use Euclidean distance clustering method to segment objects in realistic scenes. Then we use a deep learning network structure to directly extract features of the point cloud data to recognize the objects. Theoretically, this network structure shows strong performance. In experiment, there is an accuracy rate of 98.8% on the training set, and the accuracy rate in the experimental test set can reach 89.7%. The experimental results show that the network structure in this paper can accurately identify and classify point cloud objects in realistic scenes and maintain a certain accuracy when the number of point clouds is small, which is very robust.


2019 ◽  
Vol 9 (16) ◽  
pp. 3273 ◽  
Author(s):  
Wen-Chung Chang ◽  
Van-Toan Pham

This paper develops a registration architecture for the purpose of estimating relative pose including the rotation and the translation of an object in terms of a model in 3-D space based on 3-D point clouds captured by a 3-D camera. Particularly, this paper addresses the time-consuming problem of 3-D point cloud registration which is essential for the closed-loop industrial automated assembly systems that demand fixed time for accurate pose estimation. Firstly, two different descriptors are developed in order to extract coarse and detailed features of these point cloud data sets for the purpose of creating training data sets according to diversified orientations. Secondly, in order to guarantee fast pose estimation in fixed time, a seemingly novel registration architecture by employing two consecutive convolutional neural network (CNN) models is proposed. After training, the proposed CNN architecture can estimate the rotation between the model point cloud and a data point cloud, followed by the translation estimation based on computing average values. By covering a smaller range of uncertainty of the orientation compared with a full range of uncertainty covered by the first CNN model, the second CNN model can precisely estimate the orientation of the 3-D point cloud. Finally, the performance of the algorithm proposed in this paper has been validated by experiments in comparison with baseline methods. Based on these results, the proposed algorithm significantly reduces the estimation time while maintaining high precision.


2013 ◽  
Vol 760-762 ◽  
pp. 1556-1561
Author(s):  
Ting Wei Du ◽  
Bo Liu

Indoor scene understanding based on the depth image data is a cutting-edge issue in the field of three-dimensional computer vision. Taking the layout characteristics of the indoor scenes and more plane features in these scenes into account, this paper presents a depth image segmentation method based on Gauss Mixture Model clustering. First, transform the Kinect depth image data into point cloud which is in the form of discrete three-dimensional point data, and denoise and down-sample the point cloud data; second, calculate the point normal of all points in the entire point cloud, then cluster the entire normal using Gaussian Mixture Model, and finally implement the entire point clouds segmentation by RANSAC algorithm. Experimental results show that the divided regions have obvious boundaries and segmentation quality is above normal, and lay a good foundation for object recognition.


2019 ◽  
Vol 8 (5) ◽  
pp. 213 ◽  
Author(s):  
Florent Poux ◽  
Roland Billen

Automation in point cloud data processing is central in knowledge discovery within decision-making systems. The definition of relevant features is often key for segmentation and classification, with automated workflows presenting the main challenges. In this paper, we propose a voxel-based feature engineering that better characterize point clusters and provide strong support to supervised or unsupervised classification. We provide different feature generalization levels to permit interoperable frameworks. First, we recommend a shape-based feature set (SF1) that only leverages the raw X, Y, Z attributes of any point cloud. Afterwards, we derive relationship and topology between voxel entities to obtain a three-dimensional (3D) structural connectivity feature set (SF2). Finally, we provide a knowledge-based decision tree to permit infrastructure-related classification. We study SF1/SF2 synergy on a new semantic segmentation framework for the constitution of a higher semantic representation of point clouds in relevant clusters. Finally, we benchmark the approach against novel and best-performing deep-learning methods while using the full S3DIS dataset. We highlight good performances, easy-integration, and high F1-score (> 85%) for planar-dominant classes that are comparable to state-of-the-art deep learning.


Author(s):  
Gülhan Benli

Since the 2000s, terrestrial laser scanning, as one of the methods used to document historical edifices in protected areas, has taken on greater importance because it mitigates the difficulties associated with working on large areas and saves time while also making it possible to better understand all the particularities of the area. Through this technology, comprehensive point data (point clouds) about the surface of an object can be generated in a highly accurate three-dimensional manner. Furthermore, with the proper software this three-dimensional point cloud data can be transformed into three-dimensional rendering/mapping/modeling and quantitative orthophotographs. In this chapter, the study will present the results of terrestrial laser scanning and surveying which was used to obtain three-dimensional point clouds through three-dimensional survey measurements and scans of silhouettes of streets in Fatih in Historic Peninsula in Istanbul, which were then transposed into survey images and drawings. The study will also cite examples of the facade mapping using terrestrial laser scanning data in Istanbul Historic Peninsula Project.


2020 ◽  
Author(s):  
Yuichi S. Hayakawa ◽  
Hiroyuki Obanawa

<p>Measuring three-dimensional morphological changes in rocky coasts is essential in protecting the </p><p>coastal areas and evaluating the sediment dynamics therein. In this study, we carried out repeated </p><p>measurements of the three-dimensional morphology of a small rocky island using terrestrial laser </p><p>scanning (TLS) and unmanned aerial vehicle (UAV)-based structure-from-motion (SfM) </p><p>photogrammetry for 5 years. The TLS-derived point cloud data is used to align the UAV-SfM point </p><p>cloud with a better accuracy at a centimeters scale, for which iterative closest point (ICP) method was </p><p>applied. Aligned UAV-derived point clouds were then compared each other to extract changed mass </p><p>for each time period. The extracted point cloud of changed mass was converted to 3D mesh polygons, </p><p>by which the total volume of eroded mass was calculated.</p><p>The temporal analysis of the point cloud revealed spatially variable rockfalls and wave cuts. The </p><p>eroded mass volume for each period varied from 10.6 to 527.7 m3, which is equivalent to the horizontal </p><p>erosion rates of 0.03 to 0.63 m/y. The temporal changes in the eroded volume is roughly associated </p><p>with that in the frequency of high tidal waves (higher than 3 m) observed in this area. However, less </p><p>correlation was found with the frequency of large ground shakes by earthquakes. The modern erosion </p><p>rate is lower than the previously reported cliff retreat rates, but this suggests that the small island will </p><p>disappear in decades. Three-dimensional structural analysis will also help understand the dynamic </p><p>processes of the erosion of the bedrock cliffs in the island.</p>


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Siyuan Huang ◽  
Limin Liu ◽  
Jian Dong ◽  
Xiongjun Fu ◽  
Leilei Jia

Purpose Most of the existing ground filtering algorithms are based on the Cartesian coordinate system, which is not compatible with the working principle of mobile light detection and ranging and difficult to obtain good filtering accuracy. The purpose of this paper is to improve the accuracy of ground filtering by making full use of the order information between the point and the point in the spherical coordinate. Design/methodology/approach First, the cloth simulation (CS) algorithm is modified into a sorting algorithm for scattered point clouds to obtain the adjacent relationship of the point clouds and to generate a matrix containing the adjacent information of the point cloud. Then, according to the adjacent information of the points, a projection distance comparison and local slope analysis are simultaneously performed. These results are integrated to process the point cloud details further and the algorithm is finally used to filter a point cloud in a scene from the KITTI data set. Findings The results show that the accuracy of KITTI point cloud sorting is 96.3% and the kappa coefficient of the ground filtering result is 0.7978. Compared with other algorithms applied to the same scene, the proposed algorithm has higher processing accuracy. Research limitations/implications Steps of the algorithm are parallel computing, which saves time owing to the small amount of computation. In addition, the generality of the algorithm is improved and it could be used for different data sets from urban streets. However, due to the lack of point clouds from the field environment with labeled ground points, the filtering result of this algorithm in the field environment needs further study. Originality/value In this study, the point cloud neighboring information was obtained by a modified CS algorithm. The ground filtering algorithm distinguish ground points and off-ground points according to the flatness, continuity and minimality of ground points in point cloud data. In addition, it has little effect on the algorithm results if thresholds were changed.


Sign in / Sign up

Export Citation Format

Share Document