scholarly journals AODV-UI with Malicious Node Detection and Removal for Public MANET

2012 ◽  
Vol 8 (4) ◽  
pp. 110 ◽  
Author(s):  
Ruki Harwahyu ◽  
Boma A. Adhi ◽  
Harris Simaremare ◽  
Abdusy Syarif ◽  
Riri F. Sari ◽  
...  

A node in Mobile Ad-hoc Network (MANET) solely depends on neighbor nodes for its connectivity to the outer networks. It is completely different with fixed network connection where a central infrastructure is providing connectivity to the outside network for all mobile nodes there. This kind of situation makes MANET easier to build rather than fixed network with certain infrastructure. However, this nature of MANET makes it very vulnerable to various attacks, especially by nodes within the MANET that is called malicious nodes. This paper provides a preliminary result for MANET security enhancement based on AODV-UI routing protocol. In this work we implement an algorithm to detect and remove malicious nodes in AODV-UI routing protocol. We evaluate our work in different scenarios by varying the number of nodes, the number of malicious node, the sending rate of the node in concern, and the type of the attack i.e. route poisoning, black hole, packet spoofing. Our experiment shows that on average, an attack can be completely removed within 0.48 seconds in the worst case, with the traffic rate of 100 kbps, and 0.04 seconds in the best case, with the sending rate of 10 kbps.

Author(s):  
A. S. M. Muntaheen ◽  
Milton Chandro Bhowmick ◽  
Md. Raqibul Hasan Rumman ◽  
Nayeem Al-Tamzid Bhuiyan ◽  
Md. Taslim Mahmud Bhuyain ◽  
...  

A self-organized wireless communication short-lived network containing collection of mobile nodes is mobile ad hoc network (MANET). The mobile nodes communicate with each other by wireless radio links without the use of any pre-established fixed communication network infrastructure or centralized administration, such as base stations or access points, and with no human intervention. In addition, this network has potential applications in conference, disaster relief, and battlefield scenario, and have received important attention in current years. There is some security concern that increases fear of attacks on the mobile ad-hoc network. The mobility of the NODE in a MANET poses many security problems and vulnerable to different types of security attacks than conventional wired and wireless networks. The causes of these issues are due to their open medium, dynamic network topology, absence of central administration, distributed cooperation, constrained capability, and lack of clear line of defense. Without proper security, mobile hosts are easily captured, compromised, and attacked by malicious nodes. Malicious nodes behavior may deliberately disrupt the network so that the whole network will be suffering from packet losses. One of the major concerns in mobile ad-hoc networks is a traffic DoS attack in which the traffic is choked by the malicious node which denied network services for the user. Mobile ad-hoc networks must have a safe path for transmission and correspondence which is a serious testing and indispensable issue. So as to provide secure communication and transmission, the scientist worked explicitly on the security issues in versatile impromptu organizations and many secure directing conventions and security measures within the networks were proposed. The goal of the work is to study DoS attacks and how it can be detected in the network. Existing methodologies for finding a malicious node that causes traffic jamming is based on node’s retains value. The proposed approach finds a malicious node using reliability value determined by the broadcast reliability packet (RL Packet). In this approach at the initial level, every node has zero reliability value, specific time slice, and transmission starts with a packet termed as reliability packet, node who responded properly in specific time, increases its reliability value and those nodes who do not respond in a specific time decreases their reliability value and if it goes to less than zero then announced that it’s a malicious node. Reliability approach makes service availability and retransmission time.


Author(s):  
Naseer Ali Husieen ◽  
Suhaidi Hassan ◽  
Osman Ghazali ◽  
Lelyzar Siregar

This paper evaluates the performance of Reliable Multipath Dynamic Source Routing Protocol (RM-DSR) protocol with different network size compared to DSR protocol. RM-DSR developed in the mobile ad-hoc network to recover from the transient failure quickly and divert the data packets into a new route before the link is disconnected. The performance of RM-DSR protocol is tested in the Network Simulator (NS-2.34) under the random way point mobility model with varying number of mobile nodes. The network size parameter is used to investigate the robustness and the efficiency of RM-DSR protocol compared to DSR protocol. The network size affects the time of the route discovery process during the route establishment and the route maintenance process which could influence the overall performance of the routing protocol. The simulation results indicate that RM-DSR outperforms DSR in terms of the packet delivery ratio, routing overhead, end-to-end delay, normalized routing load and packet drop.


2020 ◽  
Vol 17 (6) ◽  
pp. 2483-2487
Author(s):  
Nippun Kamboj ◽  
Dalip ◽  
Munishwar Rai

Current time represents the era of communication technology and in this revolution MANET is widely used and act as a key star for data communication in real life decisive scenario for e.g., disaster management, traffic control, military services etc. MANET is infrastructureless data communication network comprising of mobile nodes. For MANET it requires secure and energy efficient framework for the underlying routing protocol. To meet the need of efficient data communication in MANET, an Energy Efficient and Secure AODV (EES-AODV) protocol is proposed. In the projected routing protocol, first the order of network nodes happen dependent on energy and afterward encryption has been done. Simulation of projected protocol is performed for such as Average Delay, PDR and Throughput. Simulated results shows that modified AODV gives optimized performance and provides a more secure and energy aware protocol.


Integrating the Mobile Ad-Hoc Network (MANET) with Internet has many advantages. The Data collected from the Mobile nodes can be broadcasted to the world by connecting the Internet to it via Gateway. Clustering is a practical way to enhance the system performance. Security is a significant issue in the Integrated MANETInternet climate in light of the fact that in this climate we need to think about the assaults on Internet availability. So, to overcome this issue, we have proposed Secure and Authenticated routing protocol (SARP) to enhance security performance of the networks. This routing protocol is used to discover a secure route and to transmit data packets securely. In this protocol clusters are formed and security relies on the hardness of the symmetric and asymmetric key algorithms. We show the practicality of this convention as for the security prerequisites and security investigation against different assaults. The estimations and reproductions are given to show the security of the proposed convention. The outcomes show that, the proposed convention have preferred execution over the current secure conventions for Cluster based Internet Integrated with MANETs, in terms of security.


2017 ◽  
Vol 3 (12) ◽  
Author(s):  
Aslam Khan

A mobile ad hoc network (MANET) may be a self-configured, infrastructure-less network of mobile nodes that move independently. Owing to this movement, links can change often and can require special routing techniques to handle this. Every node acts as an intermediate router to receive and transmit packets. in this paper, the impact of varying transmission range on different propagation model and queue model on 3 routing protocols specifically AODV, DSR and DYMO is analyzed. The simulations were done on Qualnet. The significant metrics used for comparative analysis are- throughput, end-to-end delay and average jitter. The nodes of designed scenario communicate all the way through constant bit rate (CBR) application traffic. It is found that AODV is best performer under CBR traffic for MANET nodes operated through Okumura Propagation Model with queue technique as well as DYMO performs well in free space propagation model using queuing technique. This paper also summarize as the node density increases in network throughput performance decreases. Further in this paper DRAODV routing protocol is designed and implemented in order to improve the QoS over AODV routing protocol under variable transmission range.


2011 ◽  
Vol 2 (4) ◽  
pp. 82-94
Author(s):  
Pavan Kumar Pandey ◽  
G. P. Biswas

The Mobile Ad hoc Network (MANET) is a collection of connected mobile nodes without any centralized administration. Proactive routing approach is one of those categories of proposed routing protocol which is not suitable for larger network due to their high overhead to maintain routing table for each and every node. The novelty of this approach is to form a binary tree structure of several independent sub-networks by decomposing a large network to sub-networks. Each sub-network is monitored by an agent node which is selected by several broadcasted regulations. Agent node maintains two routing information; one for local routing within the sub-network and another for routing through all other agent node. In routing mechanism first source node checks for destination within sub-network then source sends destination address to respective parent agent node if destination is not available in local routing, this process follows up to the destination node using agent mode. This approach allowed any proactive routing protocol with scalability for every routing mechanism. The proposed approach is thoroughly analyzed and its justification for the connectivity through sub-networks, routing between each source to destination pair, scalability, etc., are given, which show expected performance.


Author(s):  
Pavan Kumar Pandey ◽  
G. P. Biswas

The Mobile Ad hoc Network (MANET) is a collection of connected mobile nodes without any centralized administration. Proactive routing approach is one of those categories of proposed routing protocol which is not suitable for larger network due to their high overhead to maintain routing table for each and every node. The novelty of this approach is to form a binary tree structure of several independent sub-networks by decomposing a large network to sub-networks. Each sub-network is monitored by an agent node which is selected by several broadcasted regulations. Agent node maintains two routing information; one for local routing within the sub-network and another for routing through all other agent node. In routing mechanism first source node checks for destination within sub-network then source sends destination address to respective parent agent node if destination is not available in local routing, this process follows up to the destination node using agent mode. This approach allowed any proactive routing protocol with scalability for every routing mechanism. The proposed approach is thoroughly analyzed and its justification for the connectivity through sub-networks, routing between each source to destination pair, scalability, etc., are given, which show expected performance.


2013 ◽  
Vol 684 ◽  
pp. 547-550
Author(s):  
Sery Vuth Tan ◽  
Minh Yuk Choi ◽  
Kee Cheon Kim

Mobile Ad-hoc Network (MANET) is a dynamic wireless network without any infrastructures. The network is weak and vulnerable to many types of attacks. One of these attacks is BlackHole. In this attack, a malicious node advertises itself as having a high sequence number and a shortest path to a specific node to absorb packets. The effect of BlackHole attack on ad-hoc network using AODV as a routing protocol will be examined in this research. We also propose a new mechanism, called DPBA-AODV, to detect and prevent BlackHole attacks on AODV protocol. Simulation result, by using NS2, depicts the efficiency of our proposed mechanism in packet delivery ratio under the presence of BlackHole nodes.


2015 ◽  
Vol 40 (4) ◽  
pp. 267-298 ◽  
Author(s):  
Himadri Nath Saha ◽  
Rohit Singh ◽  
Debika Bhattacharyya ◽  
P.K. Banerjee

Abstract With advent of technology MANET is becoming more and more ubiquitous, and so is the vulnerability of such networks to attacks. In this paper, we propose a secure, lightweight, on-demand routing protocol for MANETs. It uses the concept of fidelity to allocate trust to a neighbor, thereby taking the decision whether to send data via that neighbor or not. To combat attacks efficiently new packets like report and recommendation are used. After receiving a few of these packets a node can conclude about the behavior of a node, thereby identifying and blacklisting the malicious nodes. We try to impose bounds for the fidelity with reference to the battery of the node, which restricts a node to increase its fidelity to infinity and become dominant in the network. This protocol not only finds a secure route to transmit data, but also identifies the malicious nodes in the network. Our protocol exhibits high packet delivery fraction, with low normalized routing load and low end to end delay; which has been observed while simulating in GloMoSim platform. We have observed that our protocol performs not only better than other existing secure routing protocol in a malicious environment, but also combats, many attacks which have not been dealt with these protocols.


Sign in / Sign up

Export Citation Format

Share Document