Equations of a magnetoelectric valve motor for loop closures of the stator winding

2020 ◽  
Vol 11 (11) ◽  
pp. 47-52
Author(s):  
Alexander A. AFANAS’YEV ◽  

The article considers the differential equations of a switched permanent magnet motor in which a short-circuit fault occurred in one or more turns in one of parallel stator winding branches. Owing to the occurred asymmetry of the phase quantities, symmetrical line-to-line voltages at the stator winding terminals are assumed. It is shown that turn-to-turn short-circuit faults give rise to non-sinusoidal and imbalanced phase currents and voltages at the nominal load torque on the shaft, and it should be noted that initially, a growth of the frequency and ratios of currents in the phases with an increase in the number of short-circuited turns are observed, after which the phase currents tend to decrease (with a continuing growth in the current through the short-circuited loop), and the rotor stalling occurs. The growth of motor rotation frequency and decrease of its overloading capacity take place due to a growth in the demagnetizing effect of armature reaction caused by the current through the short-circuited stator winding turns.

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 196
Author(s):  
Mariusz Korkosz ◽  
Bartłomiej Pakla ◽  
Jan Prokop

This paper analyses the condition of a partial short-circuit in a brushless permanent magnet motor. Additionally, the problem was analysed for three stator winding configurations: star, delta and star-delta connection. The paper presents an original mathematical model allowing a winding configurations to be analysed. What is more, the said mathematical model allows taking account of the partial short-circuit condition. Frequency analysis (Fast Fourier Transform—FFT) of the artificial neutral point voltage was proposed for the purpose of detecting the partial short-circuit condition. It was demonstrated that a partial short-circuit causes a marked increase in the diagnostic frequencies of the voltage signal. The proposed brushless permanent magnet motor diagnostic method is able to detect the fault regardless of the stator winding configuration type.


2012 ◽  
Vol 529 ◽  
pp. 322-326
Author(s):  
Cai Xia Gao ◽  
Chen Hao ◽  
Yue Bing Zhao

A two-dimensional finite element model of PMLSM is build based on the finite element analysis software Magnet to research the diagnosis of stator winding inter-turn short circuit fault in PMLSM. The velocity, thrust, the stator current performance curve are obtained by simulation using Magnet when PMLSM is normal and under different extent inter-turn short circuit fault, the harmonic content of speed and thrust are analyzed using Matlab / Simulink , the conclusion that the thrust of the harmonic content is used as the Permanent Magnet Linear Synchronous Motor (PMLSM) stator inter-turn short circuit fault feature is proposed , which provided a basis for detection of stator winding inter-turn short circuit fault in PMLSM.


Sign in / Sign up

Export Citation Format

Share Document