Heat Recovery Using Organic Rankine Cycle

Vestnik MEI ◽  
2021 ◽  
pp. 51-57
Author(s):  
Dakkah Baydaa Bo ◽  
◽  
I′ldar A. Sultanguzin ◽  
Yuriy V. Yavorovsky ◽  
◽  
...  

Heat losses in industrial processes can be divided into three sections (high-, medium-, and low-temperature heat), depending on the temperature of the exhaust gases. This heat is usually recovered either by heat exchangers or by a closed Rankine cycle. However, about 60% of low-temperature heat losses remain irreplaceable. Currently, the organic Rankine cycle has become a promising method of low-temperature energy recovery, and several theoretical studies on this topic have appeared, but a small number of experimental studies have been performed. In our work, we have built a 2 kW heat recovery laboratory test bench using tube-type heat exchangers, a gear pump and a turbo expander on the working fluid R141b. As a result, we found that the efficiency of the cycle increases as the boiling point and pressure increase, but an increase in overheating at the inlet of the expander leads to a decrease in efficiency due to the use of the working fluid R141b. At the inlet of the evaporator and the outlet of the condenser, respectively, overheating and supercooling of the working fluid occurs, which negatively affects the efficiency of the cycle. The amount of useful heat obtained was 45.4 W with an efficiency of 2.24%. as a result of low efficiency of the expander and pump, as well as leaks during the test. The development of an experimental test bench with working on organic Rankin cycle requires long-term research work and great scientific potential. In the future, it will be necessary to create a new test bench based on a deeper study, so that we can get a higher efficiency of the expander and pump, which would affect the efficiency of this cycle. Also, we need to replace the working fluid in the cycle with a more efficient one.

2021 ◽  
Vol 238 ◽  
pp. 01002
Author(s):  
Diego Micheli ◽  
Mauro Reini ◽  
Rodolfo Taccani

The aim of the paper is to study the thermodynamic behavior of a non-conventional power cycle, named Carbon Carrier Cycle (CCC), which is expected to obtain interesting performance with low temperature heat source. The CCC may be regarded as derived from an absorption machine, where an expander replaces the condenser, the throttling valve and the evaporator. The working fluid is a mixture of CO2 and a proper absorber. In the paper, the thermodynamic model of this kind of cycles is described, and the results obtained considering Acetone as the absorber are discussed. A first performance comparison is then conducted with a more conventional Organic Rankine Cycle (ORC).


Author(s):  
Vittorio Tola ◽  
Matthias Finkenrath

Reducing carbon dioxide (CO2) emissions from power plants utilizing fossil fuels is expected to become substantially more important in the near- to medium-term due to increasing costs associated to national and international greenhouse gas regulations, such as the Kyoto protocol and the European Union Emission Trading Scheme. However, since net efficiency penalties caused by capturing CO2 emissions from power plants are significant, measures to reduce or recover efficiency losses are of substantial interest. For a state-of-the-art 400 MW natural gas-fueled combined cycle (NGCC) power plant, post-combustion CO2 removal based on chemical solvents like amines is expected to reduce the net plant efficiency in the order of 9–12 percentage points at 90% overall CO2 capture. A first step that has been proposed earlier to improve the capture efficiency and reduce capture equipment costs for NGCC is exhaust gas recirculation (EGR). An alternative or complementary approach to increase the overall plant efficiency could be the recovery of available low temperature heat from the solvent-based CO2 removal systems and related process equipment. Low temperature heat is available in substantial quantities in flue gas coolers that are required upstream of the CO2 capture unit, and that are used for exhaust gas recirculation, if applied. Typical temperature levels are in the order of 80°C or up to 100 °C on the hot end. Additional low-grade heat sources are the amine condenser which operates at around 100–130 °C and the amine reboiler water cooling that could reach temperatures of up to 130–140°C. The thermal energy of these various sources could be utilized in a variety of low-temperature heat recovery systems. This paper evaluates heat recovery by means of an Organic Rankine Cycle (ORC) that — in contrast to traditional steam Rankine cycles — is able to convert heat into electricity efficiently even at comparably low temperatures. By producing additional electrical power in the heat recovery system, the global performance of the power plant can be further improved. This study indicates a theoretical entitlement of up to additional 1–1.5 percentage points in efficiency that could be gained by integrating ORC technology with a post-combustion capture system for natural gas combined cycles. The analysis is based on fundamental thermodynamic analyses and does not include an engineering- or component-level design and feasibility analysis. Different ORC configurations have been considered for thermal energy recovery at varying temperature levels from the above-mentioned sources. The study focuses on simultaneous low-grade heat recovery in a single ORC loop. Heat recovery options that are discussed include in series, in parallel or cascaded arrangements of heat exchangers. Different organic operating fluids, including carbon dioxide, R245fa, and N-butane were considered for the analysis. The ORC performance was evaluated for the most promising organic working fluid by a parametric study. Optimum cycle operating temperatures and pressures were identified in order to evaluate the most efficient approach for low temperature heat recovery.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 480 ◽  
Author(s):  
Gábor Györke ◽  
Axel Groniewsky ◽  
Attila Imre

One of the most crucial challenges of sustainable development is the use of low-temperature heat sources (60–200 °C), such as thermal solar, geothermal, biomass, or waste heat, for electricity production. Since conventional water-based thermodynamic cycles are not suitable in this temperature range or at least operate with very low efficiency, other working fluids need to be applied. Organic Rankine Cycle (ORC) uses organic working fluids, which results in higher thermal efficiency for low-temperature heat sources. Traditionally, new working fluids are found using a trial-and-error procedure through experience among chemically similar materials. This approach, however, carries a high risk of excluding the ideal working fluid. Therefore, a new method and a simple rule of thumb—based on a correlation related to molar isochoric specific heat capacity of saturated vapor states—were developed. With the application of this thumb rule, novel isentropic and dry working fluids can be found applicable for given low-temperature heat sources. Additionally, the importance of molar quantities—usually ignored by energy engineers—was demonstrated.


2019 ◽  
Vol 199 ◽  
pp. 111944 ◽  
Author(s):  
Yuanyang Zhao ◽  
Guangbin Liu ◽  
Liansheng Li ◽  
Qichao Yang ◽  
Bin Tang ◽  
...  

2019 ◽  
Vol 14 (4) ◽  
pp. 500-507
Author(s):  
Lili Wei ◽  
Zhenjun Ma ◽  
Xuemei Gong ◽  
Xiujuan Guo

Abstract This paper presents experimental investigation of low-temperature heat to electricity generation system based on Organic Rankine Cycle (ORC) using R152a as the working fluid. Both energy efficiency and exergy efficiency were analyzed based on the experiments. Although energy efficiency was low to 5.0% when the evaporating and cooling temperatures were 65°C and 11°C, respectively, the exergy efficiency reached 25%, which showed great competitiveness among low-temperature heat utilization technologies. To reveal the energy recovery proportion from the waste heat, both energy extraction efficiency and exergy extraction efficiency as well as energy and exergy loss paths were analyzed. When the heat source was 65°C, 14.9% of the maximum possible thermal energy in the heat source was absorbed by the organic working fluid, and 10.7% was transferred to the cooling medium. The power output contributed 0.64%. A total of 1.8% of the exergy in the heat stream flowed to the cooling medium. The start-up work takes dramatically 0.16% and 1.7% of energy and exergy, respectively. Other energy and exergy loss occurs due to the irreversibility of the heat transfer process and expansion process. Cascade ORC system could enlarge the temperature difference of the heat stream and raise the power output. However, the energy efficiency of the multi-stage ORC system is lower than single-stage system, since there was a downward trend of the temperature of heat source for the latter stage. ORC cycle can lower the temperature of heat source to 45°C.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1197
Author(s):  
Kai-Yuan Lai ◽  
Yu-Tang Lee ◽  
Miao-Ru Chen ◽  
Yao-Hsien Liu

Low-temperature heat utilization can be applied to waste heat from industrial processes or renewable energy sources such as geothermal and ocean energy. The most common low-temperature waste-heat recovery technology is the organic Rankine cycle (ORC). However, the phase change of ORC working fluid for the heat extraction process causes a pinch-point problem, and the heat recovery cannot be efficiently used. To improve heat extraction and power generation, this study explored the cycle characteristics of the trilateral flash cycle (TFC) in a low-temperature heat source. A pinch-point-based methodology was developed for studying the optimal design point and operating conditions and for optimizing working fluid evaporation temperature and mass flow rate. According to the simulation results, the TFC system can recover more waste heat than ORC under the same operating conditions. The net power output of the TFC was approximately 30% higher than ORC but at a cost of higher pump power consumption. Additionally, the TFC was superior to ORC with an extremely low-temperature heat source (<80 °C), and the ideal efficiency was approximately 3% at the highest work output condition. The TFC system is economically beneficial for waste-heat recovery for low-temperature heat sources.


2011 ◽  
Vol 347-353 ◽  
pp. 498-503
Author(s):  
Wei Wang ◽  
Yu Ting Wu ◽  
Chong Fang Ma ◽  
Jian Yu

The amount of low temperature heat resources is very huge, efficient utilization that energy is very important issue for improving energy efficiency, saving energy and protecting environment. Due to the small available energy of low temperature heat source, how to improve thermodynamic efficiency is the key problem. In this paper, the thermodynamic model of low temperature thermal power conversion system based on organic Rankine cycle was described firstly. Turbine, single screw and piston expanders were briefly described. R123, R245fa and R134a were chose as working fluid because of quite different critical temperature. Based on this model, the influence of thermodynamic property of organic working fluid on the efficiency of low temperature thermal power conversion system was discussed. The calculating result showed that R123 is the best choice if no considering the impact of expander types and that R245fa is the best choice if considering the impact of expander. This conclusion indicated that it is very important to investigate the match relationship between working fluid and expander. Moreover, single screw expander was proved to be more suitable than turbine and piston expanders for low temperature heat power conversion system.


Sign in / Sign up

Export Citation Format

Share Document