scholarly journals A New Redefinition of Geodetic and Plane Coordinates on UTM Geodetic Markers

2020 ◽  
Vol 17 (3) ◽  
pp. 9
Author(s):  
Jeng U Liew ◽  
Ami Hassan Md Din ◽  
Khairulnizam M Idris ◽  
Mohammad Hanif Hamden ◽  
Nur Adilla Zulkifli ◽  
...  

The entire Peninsular Malaysia is situated on Sunda Tectonic Plate, which is subjected to motion at a prominent rate. All the geodetic infrastructures, including geodetic markers, benchmarks, Continuous Operating Reference Stations and Cadastral Reference Marks have moved away from their original position, and their existing coordinates are no longer reliable and secure to use. There are 10 geodetic markers around UTM that are subjected to the issue above. This study aims to redefine new geodetic and plane coordinates on UTM geodetic markers. Two units of Trimble NetR9 Geodetic Type Receiver are used to execute 3D GNSS Control Network on geodetic markers as well as Standard Benchmarks. Receiver Independent Exchange data of Continuous Operating Reference Stations and gravimetric geoid of MyGeoid model are retrieved from Department of Survey and Mapping Malaysia. Trimble Business Center, Golden Surfer 8 and StarNet are used as post-processing, geoid interpolation and one-dimensional network adjustment software, respectively. New sets of geodetic and plane coordinates along with orthometric heights are produced for these 10 geodetic markers. Eventually, UTM geodetic markers are tied to Geocentric Datum Malaysia 2000 (2016) and National Geodetic Vertical Datum, providing reliable horizontal and vertical reference for land surveying work to fulfil both industrial and educational purposes.Keywords: Coordinate redefinition, geodetic coordinate, plane coordinate, geodetic marker

Author(s):  
Dong Liu

Solvothermal reaction between Cd(NO3)2, 1,4-phenylenediacetate (1,4-PDA) and 1,3-bis(pyridin-4-yl)propane (bpp) afforded the title complex, [Cd(C10H8O4)(C13H14N2)]n. Adjacent carboxylate-bridged CdIIions are related by an inversion centre. The 1,4-PDA ligands adopt acisconformation and connect the CdIIions to form a one-dimensional chain extending along thecaxis. These chains are in turn linked into a two-dimensional network through bpp bridges. The bpp ligands adopt ananti–gaucheconformation. From a topological point of view, each bpp ligand and each pair of 1,4-PDA ligands can be considered as linkers, while the dinuclear CdIIunit can be regarded as a 6-connecting node. Thus, the structure can be simplified to a two-dimensional 6-connected network.


2012 ◽  
Vol 68 (5) ◽  
pp. o188-o194 ◽  
Author(s):  
Andreas Lemmerer ◽  
Manuel A. Fernandes

Six ammonium carboxylate salts, namely cyclopentylammonium cinnamate, C5H12N+·C9H7O2−, (I), cyclohexylammonium cinnamate, C6H14N+·C9H7O2−, (II), cycloheptylammonium cinnamate form I, C7H16N+·C9H7O2−, (IIIa), and form II, (IIIb), cyclooctylammonium cinnamate, C8H18N+·C9H7O2−, (IV), and cyclododecylammonium cinnamate, C12H26N+·C9H7O2−, (V), are reported. Salts (II)–(V) all have a 1:1 ratio of cation to anion and feature three N+—H...O−hydrogen bonds forming one-dimensional hydrogen-bonded columns consisting of repeatingR43(10) rings, while salt (I) has a two-dimensional network made up of alternatingR44(12) andR68(20) rings. Salt (III) consists of two polymorphic forms,viz.form I havingZ′ = 1 and form II withZ′ = 2. The latter polymorph has disorder of the cycloheptane rings in the two cations, as well as whole-molecule disorder of one of the cinnamate anions. A similar, but ordered,Z′ = 2 structure is seen in salt (IV).


2019 ◽  
Vol 16 (31) ◽  
pp. 347-352
Author(s):  
G. E. DELGADO ◽  
Asiloé J. MORA ◽  
T. GONZÁLEZ ◽  
I. SANTOS ◽  
P. RIVAS ◽  
...  

Thiohydantoins have been used in the manufacture of medicines and in industrial processes. Depending on the nature and type of substitution on the heterocyclic ring, these compounds may display pharmaceutical and biological activity with a variety of applications as antiepileptic, antitumoral, antiinflammatory, and principally for the treatment of prostate cancer. In this study, a new thiohydantoin was synthetized from the valine amino acid and structurally characterized. The title compound, C6H10N2O2S, with systematic name rac-5-isopropyl-2-tioxoimidazolidin-4-one, has been synthetized by a solvent-free synthesis. The heterocyclic compound was characterized by spectroscopic infrared (FTIR) and nuclear magnetic resonance (NMR) techniques, powder and single-crystal X-ray diffraction analysis (XRD). This material crystallizes in the monoclinic space group P21/c. In the supramolecular structure, the molecules are joined by N- --H···O and N---H···S hydrogen bonds, forming centrosymmetric R2 2(8) dimers and C2 2(9) chains that run along the [001] direction in an infinite one-dimensional network.


2017 ◽  
Vol 73 (11) ◽  
pp. 1739-1742 ◽  
Author(s):  
Atsuya Koizumi ◽  
Takuya Hasegawa ◽  
Atsushi Itadani ◽  
Kenji Toda ◽  
Taoyun Zhu ◽  
...  

In the title complex, diaqua(1H-imidazole-κN3)(nitrato-κ2O,O′)bis(4-oxopent-2-en-2-olato-κ2O,O′)lanthanum(III), [La(C5H7O2)2(NO3)(C3H4N2)(H2O)2], the La atom is coordinated by eight O atoms of two acetylacetonate (acac) anions acting as bidentate ligands, two water molecule as monodentate ligands, one nitrate anions as a bidentate ligand and one N atom of an imidazolate (ImH) molecule as a monodentate ligand. Thus, the coordination number of the La atom is nine in a monocapped square antiprismatic polyhedron. There are three types of intermolecular hydrogen bonds between ligands, the first involving nitrate–water O...H—O interactions running along the [001] direction, the second involving acac–water O...H—O interactions along the [010] direction and the third involving an Im–nitrate N—H...O interaction along the [100] direction (five interactions of this type). Thus, an overall one-dimensional network structure is generated. The molecular plane of an ImH molecule is almost parallel to that of a nitrate ligand, making an angle of only 6.04 (12)°. Interestingly, the ImH plane is nearly perpendicular to the planes of two neighbouring acac ligands.


2015 ◽  
Vol 71 (10) ◽  
pp. 929-935 ◽  
Author(s):  
Hyun-Chul Kim ◽  
Ja-Min Gu ◽  
Seong Huh ◽  
Chul-Hyun Yo ◽  
Youngmee Kim

Two new one-dimensional CuIIcoordination polymers (CPs) containing theC2h-symmetric terphenyl-based dicarboxylate linker 1,1′:4′,1′′-terphenyl-3,3′-dicarboxylate (3,3′-TPDC), namelycatena-poly[[bis(dimethylamine-κN)copper(II)]-μ-1,1′:4′,1′′-terphenyl-3,3′-dicarboxylato-κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), andcatena-poly[[aquabis(dimethylamine-κN)copper(II)]-μ-1,1′:4′,1′′-terphenyl-3,3′-dicarboxylato-κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours,i.e.violet plates for (I) and blue needles for (II), both of which were analysed by X-ray crystallography. The 3,3′-TPDC bridging ligands coordinate the CuIIions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one-dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutuallytranspositions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one-dimensional coordination polymer chains, forming a two-dimensional network in (I) and a three-dimensional network in (II).


CISM journal ◽  
1990 ◽  
Vol 44 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Michael G. Sideris

The geoid and its horizontal derivatives, the deflections of the vertical, play an important role in the adjustment of geodetic networks. In the one-dimensional (1D) case, represented typically by networks of orthometric heights, the geoid provides the reference surface for the measurements. In the two-dimensional (2D) adjustment of horizontal control networks, the geoidal undulations N and deflections of the vertical ξ, η are needed for the reduction of the measured quantities onto the reference ellipsoid. In the three-dimensional (3D) adjustment, N and ξ, η are basically required to relate geodetic and astronomic quantities. The paper presents the major gravimetric methods currently used for predicting ξ, η and N, and briefly intercompares them in terms of accuracy, efficiency, and data required. The effects of N, ξ, η on various quantities used in the ID, 2D, and 3D network adjustments are described explicitly for each case and formulas are given for the errors introduced by either neglecting or using erroneous N, ξ, η in the computational procedures.


2016 ◽  
Vol 72 (4) ◽  
pp. 358-362
Author(s):  
Ya-Hui Liu ◽  
Li-Ping Lu ◽  
Miao-Li Zhu ◽  
Feng Su

Coordination polymers (CPs) built by coordination bonds between metal ions/clusters and multidentate organic ligands exhibit fascinating structural topologies and potential applications as functional solid materials. The title coordination polymer, poly[diaquabis(μ4-biphenyl-3,4′,5-tricarboxylato-κ4O3:O3′:O4′:O5)tris[μ2-1,4-bis(1H-imidazol-1-yl)benzene-κ2N3:N3′]dicopper(II)dicopper(I)], [CuII2CuI2(C15H7O6)2(C12H10N4)3(H2O)2]n, was crystallized from a mixture of biphenyl-3,4′,5-tricarboxylic acid (H3bpt), 1,4-bis(1H-imidazol-1-yl)benzene (1,4-bib) and copper(II) chloride in a water–CH3CN mixture under solvothermal reaction conditions. The asymmetric unit consists of two crystallographically independent Cu atoms, one of which is CuII, while the other has been reduced to the CuIion. The CuIIcentre is pentacoordinated by three O atoms from three bpt3−ligands, one N atom from a 1,4-bib ligand and one O atom from a coordinated water molecule, and the coordination geometry can be described as distorted trigonal bipyramidal. The CuIatom exhibits a T-shaped geometry (CuN2O) coordinated by one O atom from a bpt3−ligand and two N atoms from two 1,4-bib ligands. The CuIIatoms are extended by bpt3−and 1,4-bib linkers to generate a two-dimensional network, while the CuIatoms are linked by 1,4-bib ligands, forming one-dimensional chains along the [20\overline{1}] direction. In addition, the completely deprotonated μ4-η1:η1:η1:η1bpt3−ligands bridge one CuIand three CuIIcations along thea(or [100]) direction to form a three-dimensional framework with a (103)2(10)2(42.6.102.12)2(42.6.82.10)2(8) topologyviaa 2,2,3,4,4-connected net. An investigation of the magnetic properties indicated a very weak ferromagnetic behaviour.


Sign in / Sign up

Export Citation Format

Share Document