Benzene extraction in environmental samples based on the mixture of nanoactivated carbon and ionic liquid coated on fused silica fiber before determination by headspace solid-phase microextraction-gas chromatography

2021 ◽  
Vol 4 (01) ◽  
pp. 68-78
Author(s):  
Afsaneh Afzali ◽  
Hossein Vahidi ◽  
Saeed Fakhraie

In this study, the mixture of nano activated carbon (NAC) and ionic liquid (3-triphenylphosphonio-propane-1-sulfonate; C21H21O3PS) was coated on fused silica fiber of SPME holder (NAC-IL-FSF/SPME). Then NAC/IL was used for determining of benzene in soil and vegetables samples (1.0 g, n=50) surrounding a chemical industry zone. After benzene adsorption on NAC-IL based on head space solid phase micoextraction (HS-SPME), the concentration of benzene was simply determined by introducing probe to injector of gas chromatography with flame-ionization detection (GC-FID). All effected parameters such as the sorbent mass, the amount of sample, the temperature, and the interaction time were optimized in glass chromatography vials by static procedures. The benzene vapor was absorbed from soil and vegetables samples with NAC-IL-FSF/SPME holder for 10 min at 80oC (10 mg of NAC and 0.1 g of ionic liquid in 0.5 mL of acetone coated on FSF). Then the benzene was desorbed and determined by GC-FID spectrometry. The extraction efficiency and absorption capacity of adsorbent were obtained 98.5% and 127.2 mg g-1, respectively. The high surface area of NAC and favorite interaction of aromatic chain in IL (π-π), caused to efficiently remove of benzene vapor by HS-SPME procedure as compared to other nanostructures.

2019 ◽  
Vol 2 (04) ◽  
pp. 5-14
Author(s):  
Negar Motakef Kazemi ◽  
Masoumeh Yaqoubi

In this research, bismuth oxide (Bi2O3) nanostructures were prepared via chemical method at 90 °C for 3 h. the results samples were characterized by Fourier transform infrared (FTIR) for determination of functional groups, X-ray diffraction (XRD) for evaluation of crystal structure, dynamic light scattering (DLS), scanning electron microscope (SEM) for presentation of morphology and size, energy-dispersive X-ray spectroscopy (EDS) for determination of chemical composition, and diffuse reflection spectroscopy (DRS) for ultraviolet (UV) blocking. Also, the Bi2O3 nanostructures were used for benzene extraction from waters in pH=5-7. By procedure, 30 mg of Bi2O3 mixed with hydrophobic ionic liquid ([HMIM][PF6]) and injected to water samples. After shaking and centrifuging, benzene removed from water by ionic liquid-micro solid phase extraction (IL-μSPE) and determined by gas chromatography with flame ionization detector (GC-FID). The absorption capacity and recovery was obtained 167.8 mg per gram of Bi2O3 and more than 96%, respectively.


Sign in / Sign up

Export Citation Format

Share Document