scholarly journals Development of Novel Alumina by Solid-State Reaction for 99Mo/99mTc Adsorbent Material

Al-Kimia ◽  
2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Miftakul Munir ◽  
Enny Lestari ◽  
Hambali Hambali ◽  
Kadarisman Kadarisman ◽  
Marlina Marlina

Technetium-99m (99mTc), a daughter radionuclide of molybdenum-99 (99Mo), is the most widely used radiodiagnostic agent due to its ideal characteristics. The separation of this radionuclide from 99Mo is commonly performed using alumina. However, a new production method of this radionuclide, which employs a low specific activity 99Mo, makes alumina no longer suitable as separation material. This study aims to develop novel alumina using a facile solid-state reaction for 99Mo/99mTc generator system. The SS-alumina was synthesized from aluminium nitrate nonahydrate and ammonium bicarbonate without solvent. The resulted SS-alumina was then analyzed by FTIR and BET method. 99Mo adsorption and 99mTc releasing study on a series of pH were also performed. FTIR study revealed that the resulting material was Al2O3 with a surface area of 237.65 m2/g. The adsorption capacity, 99mTc yield, 99Mo breakthrough, and alumina breakthrough were 76.06 mg Mo/g alumina, 80.31%, 56.5 µCi/mCi 99mTc, and less than 5 mg/mL, respectively. The elution profile shows a high activity of 99mTc in 2nd and 3rd fraction. It is concluded that the SS-alumina shows good performance as adsorbent material for separation of a 99Mo/99mTc and further work is now underway.

Author(s):  
S.R. Summerfelt ◽  
C.B. Carter

The wustite-spinel interface can be viewed as a model interface because the wustite and spinel can share a common f.c.c. oxygen sublattice such that only the cations distribution changes on crossing the interface. In this study, the interface has been formed by a solid state reaction involving either external or internal oxidation. In systems with very small lattice misfit, very large particles (>lμm) with coherent interfaces have been observed. Previously, the wustite-spinel interface had been observed to facet on {111} planes for MgFe2C4 and along {100} planes for MgAl2C4 and MgCr2O4, the spinel then grows preferentially in the <001> direction. Reasons for these experimental observations have been discussed by Henriksen and Kingery by considering the strain energy. The point-defect chemistry of such solid state reactions has been examined by Schmalzried. Although MgO has been the principal matrix material examined, others such as NiO have also been studied.


Author(s):  
J. R. Heffelfinger ◽  
C. B. Carter

Transmission-electron microscopy (TEM), scanning-electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) were used to investigate the solid-state reaction between a thin yttria film and a (0001) α-alumina substrate. Systems containing Y2O3 (yttria) and Al2O3 (alumina) are seen in many technologically relevant applications. For example, yttria is being explored as a coating material for alumina fibers for metal-ceramic composites. The coating serves as a diffusion barrier and protects the alumina fiber from reacting with the metal matrix. With sufficient time and temperature, yttria in contact with alumina will react to form one or a combination of phases shown by the phase diagram in Figure l. Of the reaction phases, yttrium aluminum garnet (YAG) is used as a material for lasers and other optical applications. In a different application, YAG is formed as a secondary phase in the sintering of AIN. Yttria is added to AIN as a sintering aid and acts as an oxygen getter by reacting with the alumina in AIN to form YAG.


1990 ◽  
Vol 51 (C4) ◽  
pp. C4-111-C4-117 ◽  
Author(s):  
L. J. GALLEGO ◽  
J. A. SOMOZA ◽  
H. M. FERNANDEZ ◽  
J. A. ALONSO

2013 ◽  
Vol 12 (10) ◽  
pp. 719-726
Author(s):  
R. Ayadi ◽  
Mohamed Boujelbene ◽  
T. Mhiri

The present paper is interested in the study of compounds from the apatite family with the general formula Ca10 (PO4)6A2. It particularly brings to light the exploitation of the distinctive stereochemistries of two Ca positions in apatite. In fact, Gd-Bearing oxyapatiteCa8 Gd2 (PO4)6O2 has been synthesized by solid state reaction and characterized by X-ray powder diffraction. The site occupancies of substituents is0.3333 in Gd and 0.3333 for Ca in the Ca(1) position and 0. 5 for Gd in the Ca (2) position.  Besides, the observed frequencies in the Raman and infrared spectra were explained and discussed on the basis of unit-cell group analyses.


2021 ◽  
pp. 122172
Author(s):  
Chrystian G.M. Lima ◽  
Allan J.M. Araújo ◽  
Rinaldo M. Silva ◽  
Rafael A. Raimundo ◽  
João P.F. Grilo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document