scholarly journals KONTROL DAN MONITORING OTOMATIS RUMAH KACA UNTUK BUAH STRAWBERRY

KOMPUTEK ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 35
Author(s):  
Widya Nuraeni ◽  
Eka Dwi Nurcahya ◽  
Didik Riyanto

Strawberry fruit is one commodity that has the potential to be commercially developed, because strawberries have high economic value. However, strawberries in Indonesia at this time only lead to the level of quantity of production by holding land expansion, not yet leading to the level of quality and handling of strawberries after harvest. Greenhouse is a building made of glass or plastic which can be used as a place for cultivation of plants. Greenhouses are designed so that the cultivated plants obtain optimal conditions in the growth process. The system inside the greenhouse can be controlled automatically to reduce the room temperature so that plants can grow optimally. Automatic greenhouse control and monitoring for strawberry fruit is designed with a building ratio of 1: 25cm from its original size and can accommodate strawberry fruit plants in 2 small polybags used as research samples. This control and monitoring system starts from the input process which is derived from the DHT11 temperature sensor and the YL69 soil moisture sensor. Temperature sensors can read greenhouse conditions by getting a 5V DC voltage from Arduino Uno, as well as the YL69 sensor. The results obtained are the temperature sensor can read the temperature and conditions in the greenhouse then displayed on the 16x2 character LCD screen and the YL69 soil moisture sensor can read the water content below 70% which will then turn on the water pump automatically and provide notification through the telegram application with the help of Wi-Fi module ESP8266.

Author(s):  
K. Akanksha

Nowadays gardening has become a hobby for everyone. Everyone is showing interest in growing their own plants in their houses like terrace farming. So we have decided to do a project which can be useful for everyone even the farmers can be benefitted by our project. In our project we are preparing a greenhouse for cultivating different kinds of crops. Our greenhouse consists of arduino UNO, sensors like (temperature sensor, soil moisture sensor, colour sensor and light sensor), actuators. All these are used in sensing the outside environment and giving signals to arduino so that it sends the signal through GSM module and this GSM module will give us a message alert through our mobile phones like for example if the moisture is less in soil then we will get alert “your moisture has decreased water the plants” so that we can turn on our motor pumps to water. Here we are using thingspeak cloud for coding the arduino through IOT. Our project will also do its watering by itself when the moisture level decreases, this is done by soil moisture sensor. It is very reasonable and complete greenhouse can be constructed under Rs.10,000 which can save lots of money for the farmers. The crop yield will also be very good and this will be useful in increasing the economy of farming.


2019 ◽  
Vol 8 (2) ◽  
pp. 75-80
Author(s):  
Fadjri Ramadhan ◽  
Irfan Ardiansah ◽  
Roni Kastaman

Banana is one of the commodities that have nutritional value and high economic value. In order to produce a nice fruit and a high economic value, these plants must grow well. The Factors that can cause the plant to grow well, one of them is water. Water is used by plants, to grow root, stem, leaves and also maturation the fruit. When the plant doesn’t have water, growth will be stunted even death. In addition to deficiencies, excess water on the plant can also cause spoilage. Therefore, needed a tool which can watering plants, especially banana plant. The tool can be made using Arduino. Arduino is brand platform microcontroller that can control various sensors from soil moisture sensor, humidity sensor even it can apply the concept of the Internet of Things. The purpose of this research is to create a prototype automatic watering tool uses concept of the Internet of Things (IoT) to find out the condition of banana plant in real-time. The results obtained, the automatic watering tool successfully built and functional according the design, starting from the arduino that can control the soil moisture sensor to read current soil moisture, insert the data into the database, and the pump doesn’t on, because the moisture didn’t under 41% or in dry condition during the research. These data also sent to the user with a method of push notification.Keywords: Arduino, Banana, Internet of Things, Pushbullet, Push notification


The main aim of this paper is to keep an eye on the growing betel leaf inside the greenhouse using Internet of Things (IoT). Maintaining the growth of the betel leaf helps in the quality and quantity of the production throughout the year. Since betel leaf can be grown all over many years one can maintain the data of the surrounding temperature, soil moisture, its climbing stems are also observed and these data are recorded and stored in the Amazon Web Server (AWS). For this we use Wireless Sensor Networks (WSN) such as temperature sensor, soil moisture sensor, accelerometer sensor, relay, water pump. These sensors help in detecting any changes inside the greenhouse and those data are stored in AWS and can be retrieved whenever necessary. GSM Module allows mobile phone to receive message through GPRS.


Author(s):  
Atmiasri ◽  
Andika Tri Wiyono

Currently, the control of cultivated plants is still manual, where farmers watering and checking soil moisture on the planting object. However, we cannot avoid technological progress in this life because technological progress will run following scientific advances. Therefore, every innovation is created to provide positive benefits for life. The ideal chili cultivation planning requires information about climatic conditions that play a significant role in chili cultivation is rainfall. Plant growth will be incredible if there is sufficient water supply; humidity for chili plants ranges from 60-80%. Therefore, chili cultivation planning must pay attention to rainfall because related to water availability. Smart Garden prototype design is a solution for taking appropriate actions during extreme weather and reducing human error. A prototype Smart Garden-based Internet of Things (IoT) using the Blynk app as User Interface (GUI) in the monitoring system and using the Soil Moisture sensor as input for soil moisture conditions, where the results of the process are sent via Wemos D1 mini-module to the Blynk server to display the state of soil moisture and automatic watering.


2019 ◽  
Vol 5 (1) ◽  
pp. 97-106
Author(s):  
Rudi Budi Agung ◽  
Muhammad Nur ◽  
Didi Sukayadi

The Indonesian country which is famous for its tropical climate has now experienced a shift in two seasons (dry season and rainy season). This has an impact on cropping and harvesting systems among farmers. In large scale this is very influential considering that farmers in Indonesia are stilldependent on rainfall which results in soil moisture. Some types of plants that are very dependent on soil moisture will greatly require rainfall or water for growth and development. Through this research, researchers tried to make a prototype application for watering plants using ATMEGA328 microcontroller based soil moisture sensor. Development of application systems using the prototype method as a simple method which is the first step and can be developed again for large scale. The working principle of this prototype is simply that when soil moisture reaches a certainthreshold (above 56%) then the system will work by activating the watering system, if it is below 56% the system does not work or in other words soil moisture is considered sufficient for certain plant needs.


2021 ◽  
Vol 733 (1) ◽  
pp. 012025
Author(s):  
Murti Marinah ◽  
Nadhifa Aqilla Husna ◽  
Hafiz Salam ◽  
Agus Muhamad Hatta

Sign in / Sign up

Export Citation Format

Share Document