scholarly journals Oak pollen concentration in the air of selected Polish cities in 2020

Alergoprofil ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 15-20
Author(s):  
Anna Rapiejko ◽  
Małgorzata Malkiewicz ◽  
Monika Ziemianin ◽  
Aneta Sulborska ◽  
Kazimiera Chłopek ◽  
...  

The study aims to compare the oak pollen season in selected Polish cities; Bialystok, Bydgoszcz, Cracow, Katowice, Piotrkow Trybunalski, Lublin, Olsztyn, Opole, Szczecin, Warsaw, and Wroclaw in 2020. Measurements were made using the volumetric method, with a Hirst-type sampler. Oak pollen season, defined as the period with 98% of the annual total catch, started between 14 (in Opole) and 25 April (in Lublin). The season ended on 1 June at the latest;  in Sosnowiec, Bydgoszcz, Olsztyn, and Bialystok. It lasted from 30 to 47 days  (37 days on average). The maximum daily oak pollen concentrations were observed between 24 April and 11 May. The highest annual sum of oak pollen grains (SPI) was recorded in Lublin, while the lowest in Bialystok. The highest concentrations of 596 oak pollen grains/m3 were noted in Lublin on 28 April. The longest exposure to high concentrations of oak pollen (>91 grains/m3), lasting 12-13 days, was recorded in Lublin, Opole, and Wroclaw.

Alergoprofil ◽  
2021 ◽  
Author(s):  
Anna Rapiejko ◽  
Małgorzata Malkiewicz ◽  
Tomasz Wolski ◽  
Agata Konarska ◽  
Monika Ziemianin ◽  
...  

The study aims to monitor the alder pollen season in selected Polish cities: Bialystok, Cracow, Lublin, Olsztyn, Opole, Piotrkow Trybunalski, Sosnowiec, Szczecin, Warsaw, Wroclaw and Zielona Gora in 2021. Pollen concentrations were recorded by volumetric method using a Burkard-type sampler operating in a continuous volumetric mode. Alder pollen season, defined as the period with 98% of the annual total catch, started in 3rd decade of February in all monitoring sites. There was a marked variation in duration of the season between the sites. It lasted from 31 in Cracow to 54 days in Bialystok (38 days on average). The highest peak daily alder pollen concentrations were observed in Wroclaw (1879 grains/m3) on February 26th). The longest exposure to high concentrations of alder pollen, lasting 22–24 days, was detected in Zielona Gora, Piotrkow Trybunalski and Olsztyn. The alder pollen season in 2021, compared to the previous year, was longer, with higher average sum of daily concentrations over the season, higher maximum daily concentrations and longer exposure to high pollen concentrations at most monitoring sites.


Alergoprofil ◽  
2020 ◽  
Vol 16 (2) ◽  
pp. 25-30
Author(s):  
Małgorzata Malkiewicz ◽  
Krystyna Piotrowska-Weryszko ◽  
Małgorzata Puc ◽  
Dariusz Jurkiewicz ◽  
Grzegorz Siergiejko ◽  
...  

This paper presents the course of alder pollination season in Poland in 2020. The measurements were performed in Bydgoszcz, Bialystok, Lublin, Olsztyn, Opole, Piotrkow Trybunalski, Sosnowiec, Szczecin, Warsaw, Wroclaw and Zielona Gora. Volumetric method with the use of Volumetric Spore Trap (Burkard, Lanzoni) was implemented. Pollen season was defined as the period in which 95% of the annual total catch occurred. The alder pollen season in 2020 started about 10–30 days earlier compared to 2017–2019. The pollen season started first in Szczecin, Opole and Zielona Gora (in the second half of January). In the other cities alder pollen season started in first half of February. The highest daily pollen count was recorded in Lublin (1211 P/m3). In other cities the maximum concentrations ranged from 160 P/m3 in Sosnowiec to 465 P/m3 in Piotrkow Trybunalski. The highest alder pollen concentrations were detected in the first decade of March (March 1st–3rd). Only in Zielona Gora, Wroclaw, Opole and Sosnowiec the maximum concentration was recorded in the third decade of February. The annual pollen sum of Alnus in 2020 was even 5–10 times lower than in years 2019.


Aerobiologia ◽  
2020 ◽  
Vol 36 (4) ◽  
pp. 669-682 ◽  
Author(s):  
Antonella Cristofori ◽  
Edith Bucher ◽  
Michele Rossi ◽  
Fabiana Cristofolini ◽  
Veronika Kofler ◽  
...  

AbstractArtemisia pollen is an important aeroallergen in late summer, especially in central and eastern Europe where distinct anemophilous Artemisia spp. produce high amounts of pollen grains. The study aims at: (i) analyzing the temporal pattern of and changes in the Artemisia spp. pollen season; (ii) identifying the Artemisia species responsible for the local airborne pollen load.Daily pollen concentration of Artemisia spp. was analyzed at two sites (BZ and SM) in Trentino-Alto Adige, North Italy, from 1995 to 2019.The analysis of airborne Artemisia pollen concentrations evidences the presence of a bimodal curve, with two peaks, in August and September, respectively. The magnitude of peak concentrations varies across the studied time span for both sites: the maximum concentration at the September peak increases significantly for both the BZ (p < 0.05) and SM (p < 0.001) site. The first peak in the pollen calendar is attributable to native Artemisia species, with A. vulgaris as the most abundant; the second peak is mostly represented by the invasive species A. annua and A. verlotiorum (in constant proportion along the years), which are causing a considerable increase in pollen concentration in the late pollen season in recent years.. The spread of these species can affect human health, increasing the length and severity of allergenic pollen exposure in autumn, as well as plant biodiversity in both natural and cultivated areas, with negative impacts on, e.g., Natura 2000 protected sites and crops.


Alergoprofil ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 17-22
Author(s):  
Małgorzata Puc ◽  
Daniel Kotrych ◽  
Agnieszka Lipiec ◽  
Kazimiera Chłopek ◽  
Dariusz Jurkiewicz ◽  
...  

Pollen grains are one of the most important groups of atmospheric biological particles that cause allergic processes. Meteorological factors affect the occurrence of pollen allergen release in the air. In order to shed light on this phenomenon this study compares the ash pollen seasons in Bialystok, Bydgoszcz, Sosnowiec, Piotrkow Trybunalski, Opole, Olsztyn, Szczecin, Warsaw and Lublin in 2019. The investigations were carried out using the volumetric method (Hirst type pollen sampler). Seasonal Pollen Index (SPI) was estimated as the sum of daily average pollen concentrations in the given season. The ash pollination is mainly observed in April. Diagnosis of ash pollen allergy is made difficult due to an overlapping pollination period with Betulaceae and some cross-reactivity with allergens from Betulaceae. It is not clear whether ash pollen is a primary cause of sensitization or whether it is implicated through cross-sensitization to other pollens. In 2019 the pollen season of ash started first in Opole, on the March 9th. At the latest, a pollen season ended in Bialystok, after mid may. The differences of pollen seasons duration were very considerable, from 28 to 50 days. The highest airborne concentration of 190 pollen grains/m3 was noted in Lublin on the April 21st. The maximum values of seasonal pollen count in Polish cities occurred between April 4th and 22nd, most often between April 18th–22nd. The highest ash pollen allergen hazard occurred in 2019 in Lublin, Warsaw, Piotrkow Trybunalski and Bydgoszcz, and was at least three times higher than in other cities. The highest variability in the analysed seasons was found in the peak value and annual total.


2015 ◽  
Vol 68 (4) ◽  
pp. 325-331 ◽  
Author(s):  
Aleksandra Kruczek ◽  
Małgorzata Puc ◽  
Alina Stacewicz ◽  
Tomasz Wolski

The aim of the study was to investigate the concentration of <em>Alnus</em> L., <em>Corylus</em> L. and <em>Betula</em> L. pollen in the village of Gudowo (Western Pomerania, Poland) in the years 2012–2014 in order to estimate the threat of allergenic tree pollen in this rural region. Measurements were performed using the volumetric method (VPPS Lanzoni 2000 pollen sampler). The duration of the pollen season was determined by the 98% method, taking days on which, respectively, 1% and 99% of the annual total pollen grains appeared as the beginning and end of the season. Pollen grains from hazel occurred in the air as the first ones, before pollen grains from alder and birch. The earliest beginning of the hazel pollen season was recorded in 2012, whereas alder and birch pollen seasons started the earliest in 2014. Daily maximum pollen concentrations of the investigated taxa were recorded in 2014. Birch pollen allergens posed the largest threat to pollinosis sufferers. In the years 2012–2014, pollen concentrations equal or higher than threshold values, at which people with pollinosis show allergic symptoms, were recorded most frequently for birch, hazel, and alder (25, 19, and 14 days, respectively). The highest hourly alder pollen concentration was recorded at 16:00 and in the case of hazel at 15:00. The diurnal distribution of birch pollen concentrations does not show any distinct peaks.


Alergoprofil ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 34-40
Author(s):  
Krystyna Piotrowska-Weryszko ◽  
Elżbieta Weryszko-Chmielewska ◽  
Aneta Sulborska ◽  
Małgorzata Puc ◽  
Małgorzata Malkiewicz ◽  
...  

Various concentrations of Chenopodiaceae/Amaranthaceae pollen are detected in the air of many regions of Europe. The highest content of pollen produced by the taxon is reported in southern Europe and in other countries with a warm climate and low precipitation sums. The study was focused on characterization of the Chenopodiaceae/Amaranthaceae pollen season in 11 Polish cities: Bialystok, Bydgoszcz, Cracow, Lublin, Olsztyn, Piotrkow Trybunalski, Sosnowiec, Szczecin, Warsaw, Wroclaw, and Zielona Gora in 2020. The volumetric method based on the use of the Lanzoni or Burkard pollen sampler was employed in the study. In 2020, the pollen season in the analyzed plant family began in the second half of June and ended during the first ten days of October. The earliest pollen season onset was recorded in Lublin (13.06) and Szczecin (14.06), whereas the latest beginning was noted in Wroclaw (5.07). The earliest and latest end of the pollen season was recorded in Bialystok (6.09) and in Olszyn (5.10), respectively. In terms of length, the season was characterized by the shortest duration in Wroclaw (70 days) and the longest duration in Olsztyn (106 days). In most of the analyzed cities, maximum pollen concentrations were detected in the second half of August, and the highest values were recorded in Zielona Gora and Sosnowiec. Compared to 2019 and 2018, relatively low sums of the annual concentrations of Chenopodiaceae/Amaranthaceae pollen grains, i.e. in the range of 35-231, were recorded in Poland in 2020. The highest values of this parameter were reported in Olsztyn (231) and Lublin (230), whereas the lowest value was noted in Bialystok (35). The relatively low maximum concentrations of Chenopodiaceae/Amaranthaceae pollen recorded during the study year indicate a low risk of development of allergy symptoms induced by the presence of pollen of this taxon in the air.


Author(s):  
Nicoleta Ianovici

Many airborne pollen grains and fungal spores are important biopollutants responsible for human respiratory allergy. In the conditions of România the most important cause of pollinosis is allergenic pollen of some deciduous trees as well as grasses and weeds. The measurements of pollen concentration in the aeroplankton of Timişoara were carried out in 2003 by the volumetric method. The highest concentrations are noted in April and August. A total of 23 types of pollen taxa were recorded in the air of the study area in the 2003-year: Acer, Alnus, Ambrosia, Artemisia, Betula, Carpinus, Chenopodiaceae/Amaranthaceae, Corylus, Fraxinus, Juglans, Morus, Pinaceae, Platanus, Plantago, Populus, Poaceae, Rumex, Salix, Quercus, Taxaceae/Cupressaceae, Tilia, Urtica, Ulmus. The highest values of annual total of pollen grains in a group of trees were reached by Populus and Betula, as well as in a group of grasses and weeds – Ambrosia, Urtica and Poaceae. Trees pollen predominantly contributed to the total pollen sum with a percentage of 53.56%, followed by herbs 37.54% and grasses 8.9%.


2012 ◽  
Vol 59 (2) ◽  
pp. 121-130
Author(s):  
Elżbieta Weryszko-Chmielewska ◽  
Bogusław M. Kaszewski ◽  
Krystyna Piotrowska

The course of the <i>Artemisia</i> pollen season was recorded in Lublin over a period of five years: 2001-2005. The volumetric method was applied in the studies, using a VPPS 2000 Lanzoni trap. The length of the season was determined by the 98% method. The impact of several meteorological factors on the start and course of the pollen season was analysed. It was found that in the five-year period studied the mugwort pollen season started in the second or third decade of July and lasted 59-90 days. Maximum concentrations in the range of 103-221 pollen grains in 1 m<sup>3</sup> of air were noted between 2 and 9 August. Annual totals of mugwort pollen grains ranged from 1496 to 2532. A significant positive correlation was demonstrated between the <i>Artemisia</i> pollen concentration and air temperature, and a negative correlation between the pollen concentration and air relative humidity and cloudiness. A significant impact of temperature on the start of the <i>Artemisia</i> pollen season was also found.


2013 ◽  
Vol 66 (3) ◽  
pp. 3-10
Author(s):  
Krystyna Piotrowska-Weryszko ◽  
Elżbieta Weryszko-Chmielewska ◽  
Kateryna Voloshchuk ◽  
Aneta Sulborska ◽  
Nataliya Kalinovych ◽  
...  

In Europe <em>Ambrosia </em>is included in invasive species. Its pollen contains very strong allergens that can be the cause of pollinosis at the turn of summer and autumn. The aim of the present study was to compare <em>Ambrosia </em>pollen concentrations in the air of Lublin and Lviv and to analyse the effect of weather conditions on <em>Ambrosia </em>pollen content in the air. The study was carried out in 2011 and 2012. In Lublin the volumetric method was applied using a Lanzoni VPPS 2000 trap, whereas in Lviv the gravimetric method was applied using a Durham trap. To make the results comparable, the data obtained by the gravimetric method were properly counted and expressed as the number of pollen grains per 1 m<sup>3 </sup>of air. This research shows that the <em>Ambrosia</em> pollen season started about a month earlier in Lviv and lasted longer than in Lublin. In Lviv ragweed pollen was recorded from the beginning of July, while in Lublin from the second week of August. The pollen season in both cities ended on different days of October. The seasonal peaks in both years and the annual pollen count in 2011 were much higher in Lublin than in Lviv. In both cities air temperature was the most important meteorological factor affecting pollen concentrations. During the pollen season in Lublin, the wind was predominantly from NE and E directions, whereas in Lviv from N and SE.


Alergoprofil ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 54-59
Author(s):  
Krystyna Piotrowska-Weryszko ◽  
Elżbieta Weryszko-Chmielewska ◽  
Katarzyna Dąbrowska-Zapart ◽  
Monika Ziemianin ◽  
Małgorzata Puc ◽  
...  

Corylus produces allergenic pollen grains that appear in the air in early spring and cause pollen allergy in sensitive people. The aim of this study was to compare the Corylus pollen seasons in 2021 in the following 11 cities in Poland: Bialystok, Bydgoszcz, Cracow, Sosnowiec, Lublin, Olsztyn, Piotrkow Trybunalski, Szczecin, Warsaw, Wroclaw, and Zielona Gora. This research was conducted using the volumetric method and Burkard or Lanzoni pollen samplers. Pollen season duration was determined by the 95% method. The hazel pollen season in 2021 began relatively late, between February 20 and March 1. The season start was recorded earliest in Zielona Gora, while latest in Olsztyn. The highest values of maximum Corylus pollen concentration were recorded in Sosnowiec (230 P/m3) and Zielona Gora (213 P/m3), whereas the lowest ones in Bialystok (27 P/m3) and Bydgoszcz (54 P/m3). In most of these cities, the maximum daily concentration of Corylus pollen grains was recorded in the third 10 days of February or at the beginning of March and only in Lublin and Bialystok the peak value occurred later, on March 16 and March 26, respectively. The highest risk of allergy in people sensitive to the pollen of this taxon was found in Lublin, Olsztyn, and Zielona Gora. The highest values of the annual pollen integral were determined in Lublin, similarly to the previous years.


Sign in / Sign up

Export Citation Format

Share Document