scholarly journals Overview of integrated phytoremediation for heavy metals contaminated soil

2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Tzung-Yuh Yeh ◽  
Chitsan Lin

Heavy metal contaminated soil due to industrial, agricultural and municipal activities is becoming a global concern. Heavy metals severely affect plants, animals and human health. A suitable technology is necessary for heavy metals removal because it cannot self-decomposition as organic compounds. Among the various technologies surveyed, phytoremediation is one of the safest, most innovative, environmental friendly and cost-effective approach for heavy metals removal. Nevertheless, traditional phytoremediation practices pose some limitations such as long processing time, unstable treatment efficiency and limited application at large scale. In many methods proposed to improve phytoremediation, integrated phytoremediation has been studied in the recent years. Integrated phytoremediation use chelating agents and phytohormones to enhance phytoremediation. This is an environmentally safe, saving time and relative high effective method. Results showed that the association of a metal ion and a chelating agent to form chelates helps to maintain the availability of metals in the soil for the uptake of plants. Phytohormones supply nutrients for the soil to support vegetable growth. Therefore, integrated phytoremediation is a promising solution to overcome the disadvantages of conventional phytoremediation. It should be taken commercialization and need more applied projects in this field to demonstrate and clarify the real potential of this technology. In view of above, this manuscript reviews the mechanism and the efficiency of integrated phytoremediation for heavy metals in contaminated soil to give an overview of this technology. 

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1057
Author(s):  
Ehab Azab ◽  
Ahmad K. Hegazy

Heavy metal-contaminated soil constitutes many environmental concerns. The toxic nature of heavy metals poses serious threats to human health and the ecosystem. Decontamination of the polluted soil by phytoremediation is of fundamental importance. Vegetation is an appealing and cost-effective green technology for the large-scale phytoremediation of polluted soils. In this paper, a greenhouse experiment was carried out to test the potential of Rhazya stricta as a heavy metal phytoremediator in polluted soil. Plants were grown for three months in pots filled with soils treated with the heavy metals Cd, Pb, Cu, and Zn at rates of 10, 50, and 100 mg/kg. The bioaccumulation factor (BCF) and translocation factor (TF) were calculated to detect the ability of R. stricta to accumulate and transfer heavy metals from soil to plant organs. The results showed that under increasing levels of soil pollution, the bioconcentration of Cd and Zn heavy metals showed the highest values in plant roots followed by leaves, whereas in the case of Pb and Cu, roots showed the highest values followed by stems. Heavy metals accumulation was higher in roots than in stems and leaves. The BCF of Zn reached the highest values in roots and stems for 10 mg/kg soil treatment, followed by the BCFs of Cd, Cu, and Pb. The TF for the different heavy metal pollutants’ concentrations was less than unity, suggesting that the plants remediate pollutants by phytostabilization. The TF values ranged from higher to lower were in the order Zn > Cu > Cd > Pb. The rapid growth of R. stricta and its tolerance of heavy metals, as well as its ability to absorb and accumulate metals within the plant, recommends its use in the phytoremediation of slightly polluted soils in arid lands by limiting the heavy metals transport.


2010 ◽  
Vol 46 (3) ◽  
pp. 119-127 ◽  
Author(s):  
KEN SASAKI ◽  
CHIHIRO HARA ◽  
KENJI TAKENO ◽  
HIROSHI OKUHATA ◽  
HITOSHI MIYASAKA

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 860
Author(s):  
Konstantinos Simeonidis ◽  
Manassis Mitrakas

Elevated concentrations of heavy metals in drinking water resources and industrial or urban wastewater pose a serious threat to human health and the equilibrium of ecosystems [...]


2020 ◽  
Vol 6 ◽  
pp. 927-932 ◽  
Author(s):  
Patcharin Racho ◽  
Weesuda Waiwong

Author(s):  
Rakesh Shrestha ◽  
Sagar Ban ◽  
Sijan Devkota ◽  
Sudip Sharma ◽  
Rajendra Joshi ◽  
...  

Chemosphere ◽  
2021 ◽  
pp. 130921
Author(s):  
Selma Etteieb ◽  
Mehdi Zolfaghari ◽  
Sara Magdouli ◽  
Kamalpreet Kaur Brar ◽  
Satinder Kaur Brar

2019 ◽  
Vol 215 ◽  
pp. 1233-1245 ◽  
Author(s):  
Ali Maleki ◽  
Zoleikha Hajizadeh ◽  
Vajiheh Sharifi ◽  
Zeynab Emdadi

2017 ◽  
Vol 339 ◽  
pp. 33-42 ◽  
Author(s):  
Yaru Cao ◽  
Shirong Zhang ◽  
Guiyin Wang ◽  
Ting Li ◽  
Xiaoxun Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document