wavelength converters
Recently Published Documents


TOTAL DOCUMENTS

493
(FIVE YEARS 24)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Unai Arregui Leon ◽  
Davide Rocco ◽  
Luca Carletti ◽  
Marco Peccianti ◽  
Stefano Maci ◽  
...  

Abstract The THz spectrum (spanning from 0.3 THz to 30 THz) offers the potential of a plethora of applications, ranging from the imaging through non transparent media to wireless-over-fiber communications and THz-photonics. The latter framework would greatly benefit from the development of optical-to-THz wavelength converters. Exploiting Difference Frequency Generation in a nonlinear all dielectric nanoantenna, we propose a compact solution to this problem. By means of a near-Infrared pump beam (at ω1), the information signal in the optical domain (at ω2) is converted to the THz band (at ω3 = ω2 − ω1). The approach is completely transparent with respect to the modulation format, and can be easily integrated in a metasurface platform for simultaneous frequency and spatial moulding of THz beams.


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 510
Author(s):  
Hongzhen Yang ◽  
Xiuwei Mao ◽  
Zilu Fang ◽  
Wanke Chen ◽  
Ting Wang ◽  
...  

In this paper, we propose a novel optical packet switch (OPS) architecture with input concentrators, which employ multi-input single-output optical buffers to aggregate all the incoming traffic into a small size switching fabric. Accordingly, the physical size, the number of the needed wavelength converters, and the economic cost of the total OPS node are decreased dramatically. However, the deployment of input concentrators introduces additional packet loss and delay, except from the contention at the switch output. A Markov model is presented to study the packet loss ratio (PLR) and average packet delay given by the input concentrators. The corresponding closed form expressions are given. The model also demonstrates that the system performance can be greatly improved by increasing the buffer size when the traffic load is not larger than 0.69315. The analytical values are compared with the simulation results. All the obtained results show that the proposed model provides satisfactory approximations under different network scenarios. Moreover, the economic cost savings of the proposed OPS node at the present time and its evolution as a function of time are also discussed in detail. The proposed architecture can also be applied in a packet enhanced optical transport network (OTN).


2021 ◽  
Author(s):  
Cheng Guo ◽  
Afshin Shamsshooli ◽  
Michael Vasilyev ◽  
Youichi Akasaka ◽  
Paparao Palacharla

2021 ◽  
Author(s):  
Frederik Klejs ◽  
Lukasz Krzczanowicz ◽  
Deming Kong ◽  
Michael Galili ◽  
Yabin Ye ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Utkarsh Shukla ◽  
Niraj Singhal ◽  
Rajiv Srivastava

Abstract Due to the evolution of data centric applications demand for high speed data transfer and more bandwidth is increasing continuously. The unavailability of components like tunable wavelength converters (TWCs) restrict the transfer of parallel information using wavelength division multiplexing (WDM), therefore in the present scenario optical orthogonal frequency division multiplexing can be used. Moreover in optical communication narrow Gaussian pulses are transmitted, which spread with distance and leads to the broadening of the pulse and pulse peak power goes down and thus limits the system. In this paper a Soliton based optical communication system is proposed and its comparison with Gaussian pulse is presented and it has been found that soliton pulse has lesser bit error rate in comparison to Gaussian pulses.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Carino Ferrante ◽  
Emiliano Principi ◽  
Andrea Marini ◽  
Giovanni Batignani ◽  
Giuseppe Fumero ◽  
...  

AbstractSelf-action nonlinearity is a key aspect – either as a foundational element or a detrimental factor – of several optical spectroscopies and photonic devices. Supercontinuum generation, wavelength converters, and chirped pulse amplification are just a few examples. The recent advent of Free Electron Lasers (FEL) fostered building on nonlinearity to propose new concepts and extend optical wavelengths paradigms for extreme ultraviolet (EUV) and X-ray regimes. No evidence for intrapulse dynamics, however, has been reported at such short wavelengths, where the light-matter interactions are ruled by the sharp absorption edges of core electrons. Here, we provide experimental evidence for self-phase modulation of femtosecond FEL pulses, which we exploit for fine self-driven spectral tunability by interaction with sub-micrometric foils of selected monoatomic materials. Moving the pulse wavelength across the absorption edge, the spectral profile changes from a non-linear spectral blue-shift to a red-shifted broadening. These findings are rationalized accounting for ultrafast ionization and delayed thermal response of highly excited electrons above and below threshold, respectively.


Author(s):  
Cheng Guo ◽  
Afshin Shamsshooli ◽  
Youichi Akasaka ◽  
Tadashi Ikeuchi ◽  
Michael Vasilyev

Author(s):  
Afshin Shamsshooli ◽  
Cheng Guo ◽  
Michael Vasilyev ◽  
Youichi Akasaka ◽  
Tadashi Ikeuchi

Sign in / Sign up

Export Citation Format

Share Document