Experimental Investigation on the Effect of Casting Parameters on Thin walled Castings of Metal Matrix (LM21-SiC) Composite

2017 ◽  
Vol 13 (9) ◽  
pp. 6468-6474
Author(s):  
Venkatesh L ◽  
T.V. Arjunan ◽  
M. Arulraj

 Metal matrix composites (MMCs) are widely used in several applications owing to their high strength, high specific stiffness, greater wear resistance and light weight. Normally, MMCs are processed through stir casting which exhibits poor wet ability and bonding between metal matrix and ceramic reinforcement, porosity and hot tears. These drawbacks can be overcome by squeeze casting process. Here an attempt was made on processing LM21-Sic composite for making hollow casting through squeeze casting process. Four process parameters are chosen namely squeeze pressure, stirring speed, melt temperature and reinforcement percentage. The primary objective was to experimentally investigate the influence of casting parameters on hardness & wear. Samples were cast for each experiments condition based on L9 orthogonal array. From the analysis of variance (ANOVA), it was observed that stirring speed, reinforcement percentage and Squeeze load were the process parameters making a noticeable improvement in hardness and wear. The mechanical properties such as hardness and wear are evaluated and optimum casting condition was obtained.

2019 ◽  
Vol 1 (1) ◽  
pp. 38-48
Author(s):  
A. Sathishkumar ◽  
Gowtham A ◽  
M. Jeyasuriya ◽  
S. DineshBabu

Aluminum alloy is widely used in automotive, aerospace and other engineering industries because of its excellent mechanical properties. The main objective is to enhance 6061 Al alloy’s mechanical properties by producing 6061-B4C composite through squeeze casting process. Experimentation was carried out with different micron sizes and weight fraction of B4C particles. The mechanical properties of reinforced metal matrix were experimentally investigated in terms of Ultimate Tensile Strength and Hardness. We observe that these two properties are improved by the reinforcement of B4C particles and applied squeeze pressure.


2014 ◽  
Vol 14 (2) ◽  
pp. 125-140 ◽  
Author(s):  
Manjunath G. C. Patel ◽  
Prasad Krishna ◽  
Mahesh B. Parappagoudar

AbstractIn the present work, efforts are made to develop the input-output relationships for squeeze casting process by utilizing the fuzzy logic based approaches. Casting density in Squeeze casting is expressed as function of process parameters, such as time delay before pressurizing the metal, pressure durations, squeeze pressure, pouring temperature and die temperature. It is to be noted that, Mamdani based model and Takagi and Sugeno's model have been developed to model density in squeeze casting process. Manually constructed Mamdani based fuzzy logic controller and Takagi and Sugeno's based fuzzy logic controller have been used in approach 1 and approach 2 respectively. Training of FLC is carried with the help of five hundred input-output data set generated artificially through regression equations, obtained earlier by the same authors. The performance of the developed models was tested for both the linear and non-linear membership function distributions with the help of ten test cases. Moreover, the test data was collected by conducting the experiments and not used in training of FLCs. It is interesting to note that both approaches are capable to make accurate predictions. However, the performance of approach 2 with G bell shape membership function distribution is found to outperform approach 1 and other type of membership function distributions. The findings are useful to foundry-men, since it provides information on casting density in squeeze casting process for the different combination of process parameters without conducting any experiments.


Author(s):  
Mohan Bangaru ◽  
Thirumal Azhagan Murugan ◽  
Rajadurai Arunachalam

In the recent days, aerospace, automotive and defense sectors have been the main driving force behind the search of lighter and stronger materials in order to use in the production of vehicles. The growing demand for the production of light weight structural components and systems is fulfilled by the development of innovative metallic materials such as composites and alloys particularly based on aluminium because of their desirable properties such as low density, good castability, excellent strength and excellent corrosion resistance. Widely employed processes such as gravity and pressure die casting are used for processing aluminium alloys but the components exhibit several casting defects such as porosity, cracks, segregation and hot tears etc. This drives the industries to develop new processes which produce defect free components in shorter time as they have been under competitive pressure. Of the many such processes, squeeze casting has good capacity to produce less defective components. Squeeze casting is the process in which the molten metal solidifies under the application of pressure. The development of Aluminium Matrix Composites (AMCs) through squeeze casting has been one of the major areas of research in recent times. Research works on AMCs reinforced with micrometric particles have shown that the ability to strengthen the matrix alloy by them is lesser than nanometric particles. Metal matrices reinforced with nanoparticles are characterized by significant improvement in strength and wear resistance, improved ductility and improved dimensional stability at elevated temperatures. But, nanosized ceramic particles constitute problems during fabrication as it is extremely difficult to obtain uniform dispersion of nanoparticles in liquid metals owing to their high viscosity, poor wettability in the metal matrix, and a large surface-to-volume ratio. These problems induce agglomeration and clustering of nanoparticles. The nanoparticles can be dispersed uniformly in the metal matrix by means of employing ultrasonic cavitations. Ultrasonic cavitations include the formation, growth and collapse of micro-bubbles in liquids, under cyclic high intensity ultrasonic waves. The cavitation bubbles collapse and generate a huge amount of energy, which could be used in dispersion of the nanoparticles more uniformly in the melt. In this study, squeeze casting is combined with ultrasonic cavitations to develop Metal Matrix Nanocomposites (MMNCs) of AA6061 – SiCp as a maiden attempt. The impact of varying volume percentage of SiCp nanoparticles (average size of 45 nm – 65 nm) by ultrasonic cavitations on mechanical properties such as ultimate tensile strength and hardness exhibited by MMNCs were analyzed. In this research, volume percentage of SiCp nanoparticles was varied at 0.4%, 0.8% and 1.2% respectively by employing ultrasonic vibrations at the amplitude of 70 μm to the melt of AA6061. The melt of AA6061-SiCp was poured into the pre heated die cavity and squeeze pressure of 105 Mpa was applied over it for a certain period while developing MMNCs. Scanning Electron Microscope (SEM) images showed the uniform distribution of SiCp nanoparticles in AA6061 matrix. Energy Dispersive Spectroscopy (EDS) in SEM confirmed the incorporation of SiCp in AA6061 matrix. The obtained results confirmed the effectiveness of ultrasonic cavitations in squeeze casting process to disperse the nanoparticles of SiCp uniformly in AA6061 matrix. The mechanical properties of MMNCs such as ultimate tensile strength and hardness exhibited an increasing trend with respect to the increase in volume percentage of SiCp nanoparticles. Thus there prevails a great scope to develop MMNCs of aluminium using ultrasonic cavitations in squeeze casting process.


2020 ◽  
Vol 27 ◽  
pp. 1821-1826 ◽  
Author(s):  
R. Srinivasan ◽  
B. Hemanth Shrinivasan ◽  
K. Jeevan Prasath ◽  
R. Johnson Saleth ◽  
R.D. Anandhan

2014 ◽  
Vol 984-985 ◽  
pp. 350-354 ◽  
Author(s):  
M. Thirumal Azhagan ◽  
B. Mohan ◽  
A. Rajadurai ◽  
S. Maharajan

Squeeze casting is a hybrid metal processing technique that combines the advantages of both casting and forging in one operation. The automotive and aerospace sectors are behind the development of squeeze casting process as the squeeze cast components exhibit improved mechanical properties. The Aluminium alloy 6061 is a futuristic material that is widely used to produce automotive and aerospace components. In this attempt, cylindrical components of AA6061 were produced by varying the squeeze pressure at certain levels when the die preheat temperature and the pressure applied duration were maintained at constant levels. The specimens were made from the components as per ASTM standards and they were tested for mechanical properties such as impact strength and micro hardness respectively. It was found that the mechanical properties were enhanced with the increase in squeeze pressure.


Sign in / Sign up

Export Citation Format

Share Document