Hemispheric Asymmetries in a Signal Detection Task

1983 ◽  
Vol 57 (3) ◽  
pp. 923-929 ◽  
Author(s):  
John L. Andreassi ◽  
Charles S. Rebert ◽  
Ferol F. Larsen

Reaction time and signal detection performance were measured during a 78-min. vigilance task. 12 right-handed male subjects served in two experimental sessions. Subjects focused on a central fixation point and responded to signals presented at unpredictable times in one of three locations: 2.5° to right of central fixation, central, and 2.5° to the left of center. Subjects decided whether to press a response key with either the left or right hand with each presentation. Over-all vigilance performance (signal detections and response time) was similar for left and right visual-field presentations. Evidence from reaction times indicated that responses controlled by the left hemisphere were faster to a verbal stimulus (T) while reactions controlled by the right hemisphere were faster to an apparent non-verbal stimulus, an inverted T.

1988 ◽  
Vol 66 (3) ◽  
pp. 803-810 ◽  
Author(s):  
Michael P. Rastatter ◽  
Catherine Loren

The current study investigated the capacity of the right hemisphere to process verbs using a paradigm proven reliable for predicting differential, minor hemisphere lexical analysis in the normal, intact brain. Vocal reaction times of normal subjects were measured to unilaterally presented verbs of high and of low frequency. A significant interaction was noted between the stimulus items and visual fields. Post hoc tests showed that vocal reaction times to verbs of high frequency were significantly faster following right visual-field presentations (right hemisphere). No significant differences in vocal reaction time occurred between the two visual fields for the verbs of low frequency. Also, significant differences were observed between the two types of verbs following left visual-field presentation but not the right. These results were interpreted to suggest that right-hemispheric analysis was restricted to the verbs of high frequency in the presence of a dominant left hemisphere.


1983 ◽  
Vol 26 (2) ◽  
pp. 181-185 ◽  
Author(s):  
C. Rebekah Hand ◽  
William O. Haynes

Linguistic processing by the left and right cerebral hemispheres was investigated in 10 adult male stutterers and l0 matched nonstutterers. Subjects performed a lexical decision task in which nonword and real-word stimuli were presented tachistoscopically to the right and left visual hemifields. Vocal and manual reaction times to real words were measured to assess hemispheric participation in processing linguistic information and to determine differences between response modes. The stuttering group exhibited a left visual field efficiency or right hemisphere preference for this task and were slower in both vocal and manual reaction times. Ramifications for hemispheric processing theories and laryngeal dysfunction hypothesis are discussed.


1989 ◽  
Vol 3 (3) ◽  
pp. 167-179 ◽  
Author(s):  
Ingegerd Carlsson

Forty‐five undergraduate students were randomly divided into two groups and tested with the Meta‐Contrast Technique (MCT), in the left or right visual field (VF). In the MCT, the presentation of a subliminal threatening picture is intended to evoke anxiety and ego mechanisms of defence against it. More signs of repressive plus isolating defences were found in the left hemisphere (LH) group. Signs of projection plus regression tended to be more common in the right hemisphere (RH) group. The total number of anxiety signs in the MCT protocols did not differ between the groups. A clear sex difference was noticed, namely that the female LH and RH groups showed significant lateralization, while the male groups did not differ significantly on a combined defensive score. The data suggest that the left and right hemispheres may show differing perceptual styles, which are described as ego mechanisms of defence in the psychoanalytic literature.


1991 ◽  
Vol 3 (4) ◽  
pp. 313-321 ◽  
Author(s):  
Atsuko Nakagawa

The role of the left and right hemisphere was examined during semantic priming by antonyms, remote associates, and unrelated words. Targets presented directly to the left hemisphere showed an early facilitation and a late developing inhibition, while targets presented directly to the right hemisphere showed a late developing facilitation of strong and weak associations and little evidence of inhibition. When a visual cue was given prior to each target word, reaction times were facilitated equally in both visual fields and for all prime target relationships. When the priming task was combined with shadowing, reaction times generally increased and all evidence of inhibition in left hemisphere processing disappeared. This supported the idea that the inhibition found in the left hemisphere was due to its interaction with the anterior attention network.


1980 ◽  
Vol 32 (1) ◽  
pp. 69-84 ◽  
Author(s):  
Albert N. Katz

Earlier studies involving the lateralization of arithmetic abilities have provided evidence for both right and left hemisphere superiorities. It is argued here that part of this inconsistency could be due to the complexity of the arithmetic computations which have been examined. The present studies examined a subprocess shown to be involved in more complex tasks, such as subtraction. The subprocess is the identification of which of two numbers is greater, and was tested by the flashing of a pair of digits to either the left or right visual field. Errors, reaction-times to make a decision, and examination of hand × visual field interactions all indicated that this subprocess is mediated by the right hemisphere. Correlational analysis was used to identify the operations underlying the observed lateralization of this ability. This analysis indicated that an operation indexed by the spatial order in which the digits were presented was effective in the right hemisphere but not the left hemisphere. Speculations on the nature of these operations were presented.


1994 ◽  
Vol 79 (3_suppl) ◽  
pp. 1667-1679 ◽  
Author(s):  
W. David Crews ◽  
David W. Harrison

40 right-handed women, half of whom had been classified with depressed mood and the other half as nondepressed, participated in a tachistoscopic study of the influence of depressed mood on the cerebral hemispheric processing of Ekman and Friesen's 1976 happy, sad, and neutral emotional faces using a forced-choice reaction-time paradigm with only happy and sad alternatives as response manipulanda. The women with depressed mood were also characterized by elevated scores on both state and trait anxiety, suggestive of an anxious-depressive state with heightened arousal. Primary findings for the tachistoscopic data indicated that women with depressed mood as compared to nondepressed women displayed significantly faster reaction times to sad faces presented in the right visual field and happy faces presented in the left visual field. These results are suggestive of differential arousal of both the left and right cerebral hemispheres in this sample of anxious-depressed women and are discussed in light of arousal theory.


1994 ◽  
Vol 7 (2) ◽  
pp. 67-77 ◽  
Author(s):  
J. B. Mattingley ◽  
J. L. Bradshaw

Visual reaction time (RT) studies on patients with right hemisphere (RH) damage have demonstrated that the attentional imbalance to stimuli occupying left and right positions exists even within the “intact” ipsilesional hemifield. The purpose of the present study was to test whether such patients might also exhibit relative left-sided impairments in the tactile modality, where stimuli and responses involve the index and middle fingers of the non-hemiplegic ipsilesional hand. Eight patients with RH damage, and eight matched normal controls, were tested using a vibrotactile choice RT paradigm, with the responding hand held in prone or supine posture, and located either at the body midline, or in left or right hemispace. Patients showed significantly slower RTs with the left than the right finger in both hand postures, a difference which remained constant as a function of the hemispatial location of the responding hand. In the prone posture, patients' left finger RTs were slower than those of controls, who showed no difference between left and right finger RTs, while their right finger RTs were faster than those of controls. In the supine posture, both patients and controls exhibited slower left than right finger RTs, though in controls the left finger disadvantage was attributed to biomechanical rather than attentional factors. Patients also made more errors with left than right finger stimuli, both as failures of detection and as incorrect responses, while controls made fewer errors overall and showed no differences between fingers. These data demonstrate a bias in the distribution of attention to tactile stimuli at an intra-limb level, and suggest that the attentional imbalance created by RH damage may be supramodal.


2008 ◽  
Vol 39 (1) ◽  
pp. 45-54 ◽  
Author(s):  
F. V. Rijsdijk ◽  
H. Riese ◽  
M. Tops ◽  
H. Snieder ◽  
W. H. Brouwer ◽  
...  

BackgroundPrior research on the nature of the vulnerability of neuroticism to psychopathology suggests biases in information processing towards emotional rather than neutral information. It is unclear to what extent this relationship can be explained by genetic or environmental factors.MethodThe genetic relationship between a neuroticism composite score and free recall of pleasant and unpleasant words and the reaction time on negative probes (dot-probe task) was investigated in 125 female twin pairs. Interaction effects were modelled to test whether the correlation between neuroticism and cognitive measures depended on the level of the neuroticism score.ResultsThe only significant correlation was between neuroticism and the proportion of recalled unpleasant words (heritability is 30%), and was only detectable at the higher end of the neuroticism distribution. This interaction effect seems to be due to environmental effects that make people in the same family more similar (e.g. parental discipline style), rather than genetic factors. An interesting sub-finding was that faster reaction times for left versus right visual field probes in the dot-probe task suggest that cognitive processing in the right hemisphere is more sensitive to subliminal (biologically relevant) cues and that this characteristic is under substantial genetic control (49%). Individual differences in reaction times on right visual field probes were due to environmental effects only.ConclusionsThere is no evidence that the predisposition of individuals to focus on negative (emotional) stimuli is a possible underlying genetic mechanism of neuroticism.


Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 93-93 ◽  
Author(s):  
A C Lee ◽  
J P Harris ◽  
J E Calvert

The ability of Parkinsonian (PD) patients to control overt visual attention was investigated, by measuring reaction time to a visual stimulus presented at different distances (1.5 deg, 6 deg, and 12 deg) and directions (left or right) from a central fixation point. Prior to the onset of the target stimulus (a square), a cue stimulus appeared just above the fixation point. With equal probability, the arrow pointed to the left, or to the right, or was ambiguous (with two heads). On 20% of their presentations, the left and right arrows pointed in the direction opposite to where the target was to appear. Subjects were informed that 20% of cues would be misleading, and correcting lenses were used to optimise their visual acuity. In previous work with a similar paradigm, only one target eccentricity was used, and subjects were not refracted, leaving open the possibility that PD subjects had more difficulty in seeing the cues and targets. The eight PD subjects had longer reaction times than age-matched normal controls (and were relatively slower for the more eccentric targets), but made fewer errors in all conditions. In particular, they were more accurate than the controls on the presentations when the cue was misleading or ambiguous, suggesting that the PD group were ignoring the cue. It seems unlikely that the subjects discriminate the direction of the cues, given the use of optical correction, and they reported seeing the cues. Our data are consistent with those of other workers who have described a similar ‘disengagement of attention’ in PD (Clark et al, 1989 Neuropsychologia27 131 – 140) and attributed it to decreased catecholaminergic activity following destruction of midbrain structures (Wright et al, 1990 Neuropsychologia28 151 – 159).


1994 ◽  
Vol 47 (2) ◽  
pp. 291-310 ◽  
Author(s):  
Michael E. R. Nicholls

Divided visual field techniques were used to investigate hemispheric asymmetries for (a) the threshold of fusion of two flashes of light and (b) the detection of simultaneous versus successive events for a group of normal, right-handed adults. A signal detection analysis revealed a higher level of accuracy for the right visual field-left hemisphere (RVF-LH) relative to the left visual field-right hemisphere (LVF-RH) for both tasks. These results were interpreted in terms of a general left-hemisphere advantage for the discrimination of fine temporal events. The implications of these results for models of temporary asymmetry that describe the left hemisphere's advantage in terms of an exclusive specialization or relative superiority are then discussed.


Sign in / Sign up

Export Citation Format

Share Document