scholarly journals Detection of Plastic Deformation and Fatigue Damage in Pressure Vessel Steel by Leakage Magnetic Flux Sensors

2001 ◽  
Vol 50 (9Appendix) ◽  
pp. 213-218 ◽  
Author(s):  
Masatoshi KURODA ◽  
Shinsuke YAMANAKA ◽  
Koji YAMADA ◽  
Yoshihiro ISOBE
Author(s):  
José António Fonseca de Oliveira Correia ◽  
Abílio Jesus ◽  
Sergio Blasón ◽  
Miguel Calvente ◽  
Alfonso Fernández-Canteli

Miner’s rule for fatigue damage accumulation does not address conveniently the sequential effects of the fatigue loading due to underloads or overloads though such effects need to be taken into account for specific applications using a convenient model. Non-conservative (unsafe) or over-conservative (non-economic) fatigue predictions may result from such a linear damage analysis. To overcome these limitations, non-linear damage approaches are being proposed in the literature, as for instance, the double linear damage rule (DLDR). Further, advanced probabilistic models, as an alternative to deterministic ones, are being currently applied to fatigue damage assessment under variable (random) amplitude loading, though without including, up to present, sequential effects on the damage accumulation. In this paper, the synergetic effect of applying a non-linear fatigue damage model based on the DLDR in conjunction with a probabilistic approach based on the p-S-N field is pursued allowing the above mentioned sequential effects to be incorporated into a probabilistic damage prediction. The proposed approach was tested with existing fatigue block loading data available for the P355NL1 pressure vessel steel.


2005 ◽  
Vol 96 (8) ◽  
pp. 909-912
Author(s):  
Karel Obrtlík ◽  
Christian Robertson ◽  
Bernard Marini

2021 ◽  
Vol 11 (7) ◽  
pp. 2917
Author(s):  
Madalina Rabung ◽  
Melanie Kopp ◽  
Antal Gasparics ◽  
Gábor Vértesy ◽  
Ildikó Szenthe ◽  
...  

The embrittlement of two types of nuclear pressure vessel steel, 15Kh2NMFA and A508 Cl.2, was studied using two different methods of magnetic nondestructive testing: micromagnetic multiparameter microstructure and stress analysis (3MA-X8) and magnetic adaptive testing (MAT). The microstructure and mechanical properties of reactor pressure vessel (RPV) materials are modified due to neutron irradiation; this material degradation can be characterized using magnetic methods. For the first time, the progressive change in material properties due to neutron irradiation was investigated on the same specimens, before and after neutron irradiation. A correlation was found between magnetic characteristics and neutron-irradiation-induced damage, regardless of the type of material or the applied measurement technique. The results of the individual micromagnetic measurements proved their suitability for characterizing the degradation of RPV steel caused by simulated operating conditions. A calibration/training procedure was applied on the merged outcome of both testing methods, producing excellent results in predicting transition temperature, yield strength, and mechanical hardness for both materials.


Sign in / Sign up

Export Citation Format

Share Document