scholarly journals Wound healing of the corneal epithelium: a review

2021 ◽  
Vol 15 (5) ◽  
pp. 199-212
Author(s):  
Norzana Abd Ghafar ◽  
Nahdia Afiifah Abdul Jalil ◽  
Taty Anna Kamarudin

Abstract The corneal epithelium (CE) forms the outermost layer of the cornea. Despite its thickness of only 50 μm, the CE plays a key role as an initial barrier against any insults to the eye and contributes to the light refraction onto the retina required for clear vision. In the event of an injury, the cornea is equipped with many strategies contributing to competent wound healing, including angiogenic and immune privileges, and mechanotransduction. Various factors, including growth factors, keratin, cytokines, integrins, crystallins, basement membrane, and gap junction proteins are involved in CE wound healing and serve as markers in the healing process. Studies of CE wound healing are advancing rapidly in tandem with the rise of corneal bioengineering, which employs limbal epithelial stem cells as the primary source of cells utilizing various types of biomaterials as substrates.

2010 ◽  
Vol 299 (2) ◽  
pp. C528-C534 ◽  
Author(s):  
Chih-Chin Hsu ◽  
Wen-Chung Tsai ◽  
Carl Pai-Chu Chen ◽  
Yun-Mei Lu ◽  
Jong-Shyan Wang

Negative-pressure wound therapy has recently gained popularity in chronic wound care. This study attempted to explore effects of different negative pressures on epithelial migration in the wound-healing process. The electric cell-substrate impedance sensing (ECIS) technique was used to create a 5 × 10−4 cm2 wound in the Madin-Darby canine kidney (MDCK) and human keratinocyte (HaCaT) cells. The wounded cells were cultured in a negative pressure incubator at ambient pressure (AP) and negative pressures of 75 mmHg (NP75), 125 mmHg (NP125), and 175 mmHg (NP175). The effective time (ET), complete wound healing time ( Tmax), healing rate ( Rheal), cell diameter, and wound area over time at different pressures were evaluated. Traditional wound-healing assays were prepared for fluorescent staining of cells viability, cell junction proteins, including ZO-1 and E-cadherin, and actins. Amount of cell junction proteins at AP and NP125 was also quantified. In MDCK cells, the ET (1.25 ± 0.27 h), Tmax (1.76 ± 0.32 h), and Rheal (2.94 ± 0.62 × 10−4 cm2/h) at NP125 were significantly ( P < 0.01) different from those at three other pressure conditions. In HaCaT cells, the Tmax (7.34 ± 0.29 h) and Rheal (6.82 ± 0.26 × 10−5 cm2/h) at NP125 were significantly ( P < 0.01) different from those at NP75. Prominent cell migration features were identified in cells at the specific negative pressure. Cell migration activities at different pressures can be documented with the real-time wound-healing measurement system. Negative pressure of 125 mmHg can help disassemble the cell junction to enhance epithelial migration and subsequently result in quick wound closure.


2018 ◽  
Vol 29 (10) ◽  
pp. 1140-1152 ◽  
Author(s):  
Mark Basche ◽  
Daniel Kampik ◽  
Satoshi Kawasaki ◽  
Matthew J. Branch ◽  
Martha Robinson ◽  
...  

2019 ◽  
Vol 116 (52) ◽  
pp. 26633-26643 ◽  
Author(s):  
Mijeong Park ◽  
Alexander Richardson ◽  
Elvis Pandzic ◽  
Erwin P. Lobo ◽  
J. Guy Lyons ◽  
...  

Corneal epithelia have limited self-renewal and therefore reparative capacity. They are continuously replaced by transient amplifying cells which spawn from stem cells and migrate from the periphery. Because this view has recently been challenged, our goal was to resolve the conflict by giving mice annular injuries in different locations within the corneolimbal epithelium, then spatiotemporally fate-mapping cell behavior during healing. Under these conditions, elevated proliferation was observed in the periphery but not the center, and wounds predominantly resolved by centripetally migrating limbal epithelia. After wound closure, the central corneal epithelium was completely replaced by K14+limbal-derived clones, an observation supported by high-resolution fluorescence imaging of genetically marked cells in organ-cultured corneas and via computational modeling. These results solidify the essential role of K14+limbal epithelial stem cells for wound healing and refute the notion that stem cells exist within the central cornea and that their progeny have the capacity to migrate centrifugally.


2013 ◽  
Vol 115 ◽  
pp. 246-254 ◽  
Author(s):  
Ji-Qing Yin ◽  
Wen-Qiang Liu ◽  
Chao Liu ◽  
Yi-Hua Zhang ◽  
Jin-Lian Hua ◽  
...  

2021 ◽  
Vol 8 (8) ◽  
pp. 108
Author(s):  
Mohamed Abdul-Al ◽  
George Kumi Kyeremeh ◽  
Morvarid Saeinasab ◽  
Saeed Heidari Keshel ◽  
Farshid Sefat

The cornea comprises a pool of self-regenerating epithelial cells that are crucial to preserving clarity and visibility. Limbal epithelial stem cells (LESCs), which live in a specialized stem cell niche (SCN), are crucial for the survival of the human corneal epithelium. They live at the bottom of the limbal crypts, in a physically enclosed microenvironment with a number of neighboring niche cells. Scientists also simplified features of these diverse microenvironments for more analysis in situ by designing and recreating features of different SCNs. Recent methods for regenerating the corneal epithelium after serious trauma, including burns and allergic assaults, focus mainly on regenerating the LESCs. Mesenchymal stem cells, which can transform into self-renewing and skeletal tissues, hold immense interest for tissue engineering and innovative medicinal exploration. This review summarizes all types of LESCs, identity and location of the human epithelial stem cells (HESCs), reconstruction of LSCN and artificial stem cells for self-renewal.


Proceedings ◽  
2018 ◽  
Vol 2 (25) ◽  
pp. 1552 ◽  
Author(s):  
Erdost Yıldız ◽  
Özgün Melike Gedar Totuk ◽  
Adriano Mollica ◽  
Kerem Kabadayı ◽  
Afsun Şahin

After physical or surgical damage of corneal epithelium, most of analgesic drugs, like non-selective opioid agonists and non-steroid anti-inflammatory drugs, cannot be used because of their negative effects on wound healing process. Biphalin is selective µ and Δ opioid receptor agonist which has proven analgesic effects on rodents. Our purpose of study is finding effects of biphalin on wound healing of corneal epithelium. We used primary culture of human corneal epithelial cells (HCECs) for examining effects of biphalin on wound healing. Firstly, we measured toxicity of Biphalin in various concentrations with MTT assay and we showed biphalin has no toxic effects on HCECs in lower concentrations than 100 µM in various incubation times. After MTT assay, we administered 1 µM and 10 µM biphalin at in vitro scratch assay of HCECs, biphalin increased wound closure process significantly at 1 µM concentration (p < 0.05). Then we tested effects of biphalin on cell migration and proliferation separately. Bifalin increased migration of HCECs significantly (p < 0.01) at transwell migration assay. But we did not observe any significant difference between groups in Ki67 proliferation assay. In all these experiments, we also used naloxone to inhibiting effects of biphalin. In biphalin plus naloxone groups, effects of biphalin decrease partially. Our study results suggest, biphalin has positive effects on epithelial wound healing via opioid receptors. This effect because of increased migration of HCECs under influence of biphalin. With these findings, we propose biphalin as a new analgesic agent for post-surgical and post-traumatic care of corneal epithelial wounds.


Sign in / Sign up

Export Citation Format

Share Document