scholarly journals Preliminary Evaluation of Seismic Performance of Engineering Structures with PERFORM 3D

2019 ◽  
Vol 65 (4) ◽  
pp. 189-201
Author(s):  
Dongmei Li

AbstractThis study analyzed the role of PERFORM 3D in the preliminary evaluation of seismic performance of engineering structures. Firstly, PERFORM 3D was briefly introduced, and its material constitutive model and basic model were analyzed. Then, taking a high-rise building project in Yulin, Shaanxi, China, as an example, PERFORM 3D was used to evaluate its seismic performance. After establishing the engineering model, five seismic waves were selected for simulation. The results showed that the maximum values of X-axis inter-story displacement angle and Y-axis displacement angle were 1/500 and 1/360 respectively, which were far less than the standard limit; the overall energy dissipation was good, the damping was small, the overall deformation was good, and the seismic performance was also good. In conclusion, PERFORM 3D has a good performance in the preliminary evaluation of seismic performance of engineering, and it is worth further promotion and application.

2021 ◽  
pp. 136943322110561
Author(s):  
Arsam Taslimi ◽  
Mohsen Tehranizadeh

According to the observations of past earthquakes, the vertical ground motions have had a striking influence on the engineering structures, especially reinforced concrete ones. Nevertheless, the number of studies on their aftermath is insufficient, and despite some endeavors done by researchers, there is still a shortage of knowledge about the inclusion of vertical excitation on the seismic performance and the collapse probability of RC buildings. Hence, the variation in the collapse risk of three high-rise RC frame-core wall structures when they undergo bi-directional ground motions is discussed. In this paper, incremental dynamic analyses are carried out under two circumstances, including the horizontal (H) and the combined horizontal and vertical (H+V) earthquakes, and the seismic fragility curves are derived. The inter-story drift ratio corresponding to the onset of collapse has also been defined. The buildings collapse risk under the two circumstances is obtained from the risk integral. Results indicate that in the H+V state, structures meet the collapse criteria for lower intensity measures. Thus, the collapse risk increases as the structures are subjected to bi-directional seismic loads, and the consideration of this effect leads to a more accurate evaluation of buildings seismic performance.


2013 ◽  
Vol 353-356 ◽  
pp. 2138-2144
Author(s):  
Xiao Jie Cheng ◽  
Si Qi Wang ◽  
Pei Pei Niu

Based on a high-rise frame shear wall structure with high conversion layer, this essay makes compare among three structural models-wide flat beam, SRC and the common conversion beam by using Midas Building, analyzes seismic performance of three forms of conversion beam under gravity effect and seismic effect in consideration of the force of whole structure, force of conversion component and elastic earthquake, analyzes structure model when the wide flat beam is acted as conversion beam with static elastic-plastic analysis (Pushover) method to get the change of the displacement curve of base shear-vertex and the interbeded displacement angle, finds out the weak parts of the structure, comprehensively evaluates the seismic performance of the structure and put forward the key problems and the solutions through looking for performance point.


2021 ◽  
Vol 238 ◽  
pp. 112194
Author(s):  
Yuxin Pan ◽  
Thomas Tannert ◽  
Kuldeep Kaushik ◽  
Haibei Xiong ◽  
Carlos E. Ventura

Author(s):  
Damiano Caruso ◽  
Francesco Pucciarelli ◽  
Marta Zerunian ◽  
Balaji Ganeshan ◽  
Domenico De Santis ◽  
...  

Abstract Purpose To evaluate the potential role of texture-based radiomics analysis in differentiating Coronavirus Disease-19 (COVID-19) pneumonia from pneumonia of other etiology on Chest CT. Materials and methods One hundred and twenty consecutive patients admitted to Emergency Department, from March 8, 2020, to April 25, 2020, with suspicious of COVID-19 that underwent Chest CT, were retrospectively analyzed. All patients presented CT findings indicative for interstitial pneumonia. Sixty patients with positive COVID-19 real-time reverse transcription polymerase chain reaction (RT-PCR) and 60 patients with negative COVID-19 RT-PCR were enrolled. CT texture analysis (CTTA) was manually performed using dedicated software by two radiologists in consensus and textural features on filtered and unfiltered images were extracted as follows: mean intensity, standard deviation (SD), entropy, mean of positive pixels (MPP), skewness, and kurtosis. Nonparametric Mann–Whitney test assessed CTTA ability to differentiate positive from negative COVID-19 patients. Diagnostic criteria were obtained from receiver operating characteristic (ROC) curves. Results Unfiltered CTTA showed lower values of mean intensity, MPP, and kurtosis in COVID-19 positive patients compared to negative patients (p = 0.041, 0.004, and 0.002, respectively). On filtered images, fine and medium texture scales were significant differentiators; fine texture scale being most significant where COVID-19 positive patients had lower SD (p = 0.004) and MPP (p = 0.004) compared to COVID-19 negative patients. A combination of the significant texture features could identify the patients with positive COVID-19 from negative COVID-19 with a sensitivity of 60% and specificity of 80% (p = 0.001). Conclusions Preliminary evaluation suggests potential role of CTTA in distinguishing COVID-19 pneumonia from other interstitial pneumonia on Chest CT.


2014 ◽  
Vol 580-583 ◽  
pp. 1551-1554
Author(s):  
Gen Tian Zhao ◽  
Xu Ting Kou

With the project case, the seismic performance of girder transfer floor member and the plate transfer floor member were discussed. Contrast calculation was carried out in girder transfer floor member and the plate transfer floor member with SATWE method to analyze its reasonable and unreasonable places. Based on overall structure calculation of a high rise building, the seismic design requirements for buildings applying thick transferring plate have been presented. The conclusion is that the seismic performance of girder transfer floor member is more advantageous and affordable, more convenient and more economical in ingredients.


2013 ◽  
Vol 787 ◽  
pp. 711-716
Author(s):  
Daryanto ◽  
Eko Budihardjo ◽  
Wahyu Setyabudi ◽  
Gagoek Hardiman

There was an indication that high rise buildings in Jakarta was not designed based on energy conservation principles. The most important aspects of the high-rise buildings is energy saving technology located in the building envelope design. Building envelope with a full glass design functions for widening view and enhancing natural lights, even though but it is also increasing energy consumption and thermal discomfort due to the intensity of solar radiation in hot humid climates. During the current decade, the development of double building envelope type (Double Skin Façade: DSF) seemed more just to improve the aesthetics and the use of natural light, while the wind and thermal performance aspects were still lack of serious consideration. Those aspects will be chosen as the subject matter in this research. The research was aimed to investigate and compare the value of heat transfer in the building envelope of high-rise office buildings. Samples were taken from five DSF buildings, with closed and open cavity. CFD software is used for simulation of the five different models of DSF. The research proves that the high-rise office buildings as the research object in Jakarta do not apply energy conservation principle. The utilization of wind in the DSF cavity can reduce temperature and relieve the burden of air conditioning systems that is energy save. An important finding of the research is the need for ventilation in the design of a double skin at high-rise office buildings in the humid tropics.


2021 ◽  
pp. 136943322110646
Author(s):  
Peng Zhou ◽  
Shui Wan ◽  
Xiao Wang ◽  
Yingbo Zhu ◽  
Muyun Huang

The attenuation zones (AZs) of periodic structures can be used for seismic isolation design. To cover the dominant frequencies of more seismic waves, this paper proposes a new type of periodic isolation foundation (PIF) with an extremely wide low-frequency AZ of 3.31 Hz–17.01 Hz composed of optimized unit A with a wide AZ and optimized unit B with a low-frequency AZ. The two kinds of optimized units are obtained by topology optimization on the smallest periodic unit with the coupled finite element-genetic algorithm (GA) methodology. The transmission spectra of shear waves and P-waves through the proposed PIF of finite size are calculated, and the results show that the AZ of the PIF is approximately the superposition of the AZs of the two kinds of optimized units. Additionally, shake tests on a scale PIF specimen are performed to verify the attenuation performance for elastic waves within the designed AZs. Furthermore, numerical simulations show that the acceleration responses of the bridge structure with the proposed PIF are attenuated significantly compared to those with a concrete foundation under the action of different seismic waves. Therefore, the newly proposed PIF is a promising option for the reduction of seismic effects in engineering structures.


2021 ◽  
Author(s):  
Xin Zhao ◽  
Gang Wang ◽  
Jinlun Cai ◽  
Junchen Guo

<p>With the continuous development and progress of society, the structure of high-rise buildings has been paid more and more attention by the engineering community. However, the existing high- rise structure design methods often have a lot of redundancy and have a lot of room for optimization. Most of the existing seismic design methods of high-rise structures are based on engineering experience and manual iterative methods, so that the efficiency of design can not meet the needs of the society. if the method of design automation is adopted, the workload of designers can be greatly reduced and the efficiency of structural design can be improved. Based on the digital modeling theory, this paper proposes a MAD automatic design algorithm, in which the designer provides the initial design of the structure, and the algorithm carries out the modeling, analysis, optimization and design of each stage of the structure, and finally obtains the optimal structure. The structural design module of this algorithm starts from the component level, when the component constraint design meets the limit requirements of the specification, it enters and completes the component constraint design and the global constraint design of the structure in turn. In this paper, taking a ten-story braced steel frame high-rise structure as an example, the optimal design is carried out, and its seismic performance is analyzed. the results show that the MAD automatic design algorithm can distribute the materials to each part reasonably, which can significantly improve the seismic performance of the structure and realize the effective seismic design.</p>


Sign in / Sign up

Export Citation Format

Share Document