The Seismic Performance Analysis of Different Forms Beam in High Conversion Structure

2013 ◽  
Vol 353-356 ◽  
pp. 2138-2144
Author(s):  
Xiao Jie Cheng ◽  
Si Qi Wang ◽  
Pei Pei Niu

Based on a high-rise frame shear wall structure with high conversion layer, this essay makes compare among three structural models-wide flat beam, SRC and the common conversion beam by using Midas Building, analyzes seismic performance of three forms of conversion beam under gravity effect and seismic effect in consideration of the force of whole structure, force of conversion component and elastic earthquake, analyzes structure model when the wide flat beam is acted as conversion beam with static elastic-plastic analysis (Pushover) method to get the change of the displacement curve of base shear-vertex and the interbeded displacement angle, finds out the weak parts of the structure, comprehensively evaluates the seismic performance of the structure and put forward the key problems and the solutions through looking for performance point.

2020 ◽  
Vol 17 (9) ◽  
pp. 4299-4303
Author(s):  
D. Santhosh ◽  
R. Prabhakara ◽  
N. Jayaramappa

This paper studies the pushover analysis of Low, Medium and High Rise Reinforced Concrete (RC) frame with infill. Pushover analysis is nonlinear static procedures for the seismic assessment of Low, Medium and High Rise Reinforced concrete (RC) structures, due to its simplicity, efficiency in modelling and low computational time. Four storey, Eight storey and Twelve storey RC frames with infill models were considered in this analysis. This pushover analysis was carried out for default hinge properties available in program based on FEMA 356. The seismic performance of RC frame with infill was measured in terms of base force and displacement curve, performance point, number of plastic hinges at different performance levels.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Shujin Li ◽  
Cai Wu ◽  
Fan Kong

A building developed by Wuhan Shimao Group in Wuhan, China, is a high-rise residence with 56 stories near the Yangtze River. The building is a reinforced concrete structure, featuring with a nonregular T-type plane and a height 179.6 m, which is out of the restrictions specified by the China Technical Specification for Concrete Structures of Tall Building (JGJ3-2010). To investigate its seismic performance, a shaking table test with a 1/30 scale model is carried out in Structural Laboratory in Wuhan University of Technology. The dynamic characteristics and the responses of the model subject to different seismic intensities are investigated via the analyzing of shaking table test data and the observed cracking pattern of the scaled model. Finite element analysis of the shaking table model is also established, and the results are coincident well with the test. An autoregressive method is also presented to identify the damage of the structure after suffering from different waves, and the results coincide well with the test and numerical simulation. The shaking table model test, numerical analysis, and damage identification prove that this building is well designed and can be safely put into use. Suggestions and measures to improve the seismic performance of structures are also presented.


2013 ◽  
Vol 353-356 ◽  
pp. 1976-1980
Author(s):  
Kang Yuan ◽  
Ying Min Li ◽  
Song Bai Zhang

In the paper, the equation of stiff characteristic coefficient of shear wall structure with unidirectional wall frames was derived, the deformation characteristics of structure with different wall frames ratio and height were analyzed. Through pushover analysis, the seismic performance of structures were evaluated by interlayer displacement angle and plastic hinge development process. Under earthquake action, increase of wall frames ratio will make plastic deformation increase and maximum interlayer displacement floor move down.The bottom of structure is the weak region, the short wall limbs of wall frames are the weak structural vertical members. The research results show that the wall frames bring adverse effects on the structural seismic performance, so the different design meathods should be carried out according to the overturning moment proportion of wall frames.


2013 ◽  
Vol 477-478 ◽  
pp. 784-787
Author(s):  
Yi Zhen Yang ◽  
Hong Gan

Frame shear wall structure as a high-rise building one of the most widely used structure form, has good seismic performance and high bearing capacity, the frame shear wall structure research focused on the study of shear wall quantity more, pay attention to consider shear wall quantity and the intrinsic relationships between shear wall lateral stiffness and to seek the optimal design of shear wall stiffness, ignores the position of the shear wall, on the whole architecture of the influence of lateral stiffness, and can go, is set the location of the shear wall is difficult to study, this article will focus on the research of location of shear wall structure seismic performance, provide reference for the future of this kind of structure design.


Author(s):  
Syed Shoaib ◽  
Syed Shoaib ◽  
Dr M L Waiker

During earthquake motion. The seismic behavior depends upon the strength, mass, and stiffness are distributed in both horizontal and vertical planes. the buildings structural damage was severe the frame is caused due to the discontinuity in the stiffness mass and strength between the alongside stories. The same type of discontinuity is vertical geometric irregularity which is due to the irregular building configuration in vertical plane so there is to know the seismic response of building modals in different structural irregularities. Non-linear static (pushover analysis) which is used for Investigation. The purpose of study doing nonlinear static (pushover analysis) by conventional design methodology G+12 High rise buildings this work shows seismic performance and behavior of building frame with and without vertical irregularity in terms of base shear, story shear, story displacement the performance point of all models are considered also found that irregularity in assessment of the structure decreases the performance level of building there is also reduces in deformation or displacement of the structure. all the models analyzed by using ETABS and design as per IS 456:200 and 1893:2016


2016 ◽  
Vol 835 ◽  
pp. 461-466
Author(s):  
Xue Feng Zhou ◽  
Dan Dan Lv

The framed shear wall structure is a high-rise building structure with a transfer story, which has the poor seismic performance (upper rigid and lower flexible). The frame layer in the earthquake is prone to fail, which may even cause the collapse of building. In this paper, it uses the finite element software SATWE to explore the seismic performance of framed shear wall structure. Then we can draw the following conclusions: When the transfer story is set from the third layer to the ninth layer, the earthquake action of transfer story varies from 437.2kN into 564.9kN and is significantly higher than that of upper and lower layers; All the period of free vibration, angles of drift, bottom shear force, overturning moment of the structure have adverse effects on the structure, which are also detrimental to the structural seismic.


2019 ◽  
Vol 65 (4) ◽  
pp. 189-201
Author(s):  
Dongmei Li

AbstractThis study analyzed the role of PERFORM 3D in the preliminary evaluation of seismic performance of engineering structures. Firstly, PERFORM 3D was briefly introduced, and its material constitutive model and basic model were analyzed. Then, taking a high-rise building project in Yulin, Shaanxi, China, as an example, PERFORM 3D was used to evaluate its seismic performance. After establishing the engineering model, five seismic waves were selected for simulation. The results showed that the maximum values of X-axis inter-story displacement angle and Y-axis displacement angle were 1/500 and 1/360 respectively, which were far less than the standard limit; the overall energy dissipation was good, the damping was small, the overall deformation was good, and the seismic performance was also good. In conclusion, PERFORM 3D has a good performance in the preliminary evaluation of seismic performance of engineering, and it is worth further promotion and application.


2012 ◽  
Vol 226-228 ◽  
pp. 967-971
Author(s):  
Ji Xing Yuan ◽  
Qing Zhang

In this paper a super high-rise frame-core wall as an example, It was analyzed the frame-core wall structure system under action of earthquake force features, set reasonable seismic performance objectives, analysis the structure reasonable failure mode, made it have enough bearing capacity and ductility for a reasonable design of frame and coupling wall-beam, could make the frame-core wall structure with multiple seismic fortification lines, improve the seismic performance of the frame-core wall structure. Finally, the action of earthquake deformation and seismic shear force distribution was analyzed through the elastic dynamic time-history analysis. After a reasonable optimization analysis showed: Frame-core wall structure could have three seismic fortification lines: coupling beams, core wall, frame structure, and had enough energy dissipation ability at the same time, could form the rational failure mode, improved the seismic performance of the structure.


2012 ◽  
Vol 226-228 ◽  
pp. 1132-1135
Author(s):  
Shu He Wang ◽  
Jin Long Wang ◽  
Zai Gen Mu ◽  
Ju Bing Zhang ◽  
Ya Ting Liu

In the practical engineer, the infilled-wall frame structure is widely used by its economy and applicability. Under the project research, the paper establishes a finite element model for infilled-brick-wall structure based on the infilled-wall frame structure performance and after Pushover's analyses,it obtains the inter-story displacement angle, which is anti-seismic performance index to the point each floor of the infilled-wall structure under the different earthquake action . The paper analysis and assesses the infilled-wall frame structure anti-seismic performance based on the anti-seismic performance index and it provides a reference and basis for anti-seismic standard's development towards based-performance direction.


Sign in / Sign up

Export Citation Format

Share Document