scholarly journals Regulation of Cough by Voltage-Gated Sodium Channels in Airway Sensory Nerves

2018 ◽  
Vol 18 (3) ◽  
pp. 5-16 ◽  
Author(s):  
S Svajdova ◽  
M. Brozmanova

Abstract Chronic cough is a significant clinical problem in many patients. Current cough suppressant therapies are largely ineffective and have many dangerous adverse effects. Therefore, the identification of novel therapeutic targets and strategies for chronic cough treatment may lead to development of novel effective antitussive therapies with fewer adverse effects. The experimental research in the area of airway sensory nerves suggests that there are two main vagal afferent nerve subtypes that can directly activate cough – extrapulmonary airway C-fibres and Aδ-fibres (described as cough receptors) innervating the trachea. There are different receptors on the vagal nerve terminals that can trigger coughing, such as TRP channels and P2X2/3 receptors. However, in many patients with chronic respiratory diseases multiple activation of these receptors could be involved and it is also difficult to target these receptors. For that reason, a strategy that would inhibit cough-triggering nerve afferents regardless of activated receptors would be of great benefit. In recent years huge progress in understanding of voltage-gated sodium channels (NaVs) leads to a hypothesis that selective targeting of NaVs in airways may represent an effective treatment of pathological cough. The NaVs (NaV1.1 – NaV1.9) are essential for initiation and conduction of action potentials in these nerve fibres. Effective blocking of NaVs will prevent communication between airways and central nervous system and that would inhibit provoked cough irrespective to stimuli. This review provides an overview of airway afferent nerve subtypes that have been described in respiratory tract of human and in animal models. Moreover, the review highlights the current knowledge about cough, the sensory nerves involved in cough, and the voltage-gated sodium channels as a novel neural target in regulation of cough.

Author(s):  
Elisabetta Tosti ◽  
Raffaele Boni ◽  
Alessandra Gallo

The Conus genus includes around 500 species of marine mollusks with a peculiar production of venomous peptides known as conotoxins (CTX). Each species is able to produce up to 200 different biological active peptides. Common structure of CTX is the low number of aminoacids stabilized by disulfide bridges and post-translational modifications that give rise to different isoforms. µ and µ-O CTX are two isoforms that specifically target voltage-gated sodium channels. These, by inducing the entrance of sodium ions in the cell, modulate the neuronal excitability by depolarizing plasma membrane and propagating the action potential. Hyperxcitability and mutations of sodium channels are responsible for perception and transmission of inflammatory and neuropathic pain states. In this review, we describe the current knowledge of µ-CTX interacting with the different sodium channels subtypes, the mechanism of action and their potential therapeutic use as analgesic compounds in the clinical management of pain conditions.


Author(s):  
Zhi-mei Li ◽  
Li-xia Chen ◽  
Hua Li

The article “Voltage-gated Sodium Channels and Blockers: An Overview and Where Will They Go?”, written by Zhi-mei LI, Li-xia CHEN, Hua LI, was originally published electronically on the publisher’s internet portal on December 2019 without open access. With the author(s)’ decision to opt for Open Choice, the copyright of the article is changed to © The Author(s) 2020 and the article is forthwith distributed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The original article has been corrected.Corresponding authors: Li-xia CHEN, Hua LI


2020 ◽  
Author(s):  
Astrid Knuhtsen ◽  
Rachel Whiting ◽  
Fergus S. McWhinnie ◽  
Charlotte Whitmore ◽  
Brian O. Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document