Applicability of Park transformation for the analysis of transient performance during subsynchronous resonances

2013 ◽  
Vol 62 (3) ◽  
pp. 401-415 ◽  
Author(s):  
Christian Kreischer ◽  
Stefan Kulig ◽  
Carsten Göbel

Abstract Long transmission lines have to be compensated to enhance the transport of active power. But a wrong design of the compensation may lead to subsynchronous resonances (SSR). For studies often park equivalent circuits are used. The parameters of the models are often determined analytically or by a three-phase short-circuit test. Models with this parameters give good results for frequencies of 50 Hz and 100 Hz resp. 60 Hz and 120 Hz. But SSR occurs at lower frequencies what arises the question of the reliability of the used models. Therefore in this publication a novel method for the determination of Park equivalent circuit parameters is presented. Herein the parameters are determined form time functions of the currents and the electromagnetic moment of the machine calculated by transient finite-element simulations. This parameters are used for network simulations and compared with the finite-element calculations. Compared to the parameters derived by a three-phase short-circuit a significant better accuracy of simulation results can be achieved by the presented method.

2010 ◽  
Vol 47 (1) ◽  
pp. 86-93
Author(s):  
Saurabh Kumar Mukerji ◽  
Moleykutty George

An augmented short-circuit test is described for the determination of equivalent-circuit parameters of single-phase transformers with large series-branch impedances. This test may be conducted at rated currents with the transformer connected to a reduced voltage supply. Thus harmonics in current and voltage waves are negligible. This test is therefore free from harmonics-associated errors. Based on test results, phasor equations are found which give formulae for the equivalent-circuit parameters with series-branch impedance split into low- and high-voltage components.


2011 ◽  
Vol 121-126 ◽  
pp. 1269-1273
Author(s):  
Wen Xiu Tang ◽  
Mo Zhang ◽  
Ying Liu ◽  
Xu Fei Lang ◽  
Liang Kuan Zhu

In this paper, a novel method is investigated to detect short-circuit fault signal transmission lines in strong noise environment based on discrete wavelet transform theory. Simulation results show that the method can accurately determine the fault position, can effectively analyze the non-stationary signal and be suitable for transmission line fault occurred after transient signal detection. Furthermore, it can effectively eliminate noise effects of fault signal so as to realize the transmission lines of accurate fault.


2020 ◽  
Vol 14 (1) ◽  
pp. 21-26
Author(s):  
S. SKRYPNYK ◽  
◽  
A. SHEINA ◽  

Most failures in electrical installations are caused by short circuits (short circuits), which occur as a result of a failure in the electrical strength of the insulation of the conductive parts. A short circuit is an electrical connection of two points of an electric circuit with different values of potential, which is not provided by the design of the device, which interferes with its normal operation. Short circuits may result from a failure of the insulation of the current-carrying elements or the mechanical contact of the non- insulated elements. Also called a short circuit is a condition where the load resistance is less than the internal resistance of the power source. The reasons for such violations are various: aging of insulation, breakages of wires of overhead transmission lines, mechanical damages of isolation of cable lines at ground works, lightning strikes in the transmission line and others. Most often, short-circuits occur through transient resistance, such as through the resistance of an electric arc that occurs at the point of damage to the insulation. Sometimes there are metallic short circuits in which the resistance of the electric arc is very small. The study of short circuits in the power grid is a major step in the design of modern electrical networks. The research is conducted using computer software, first by modeling the system and then simulating errors. A malfunction usually leads to an increase in the current flowing in the lines, and failure to provide reliable protection can result in damage to the power unit. Thus, short-circuit calculations are the primary consideration when designing, upgrading, or expanding a power system. The three-phase short circuit is the least likely. However, in many cases, the three-phase short circuit is associated with the most severe consequences, as it causes the highest power imbalances on the shafts of the generators. The study of transients begins with the mode of three-phase closure due to its relative simplicity in comparison with other types of asymmetry. In most cases, the analysis and calculation of the transient regime of the electrical system involves the preparation of a calculated scheme of substitution, in which the parameters of its elements are determined in named or relative units. The electrical substitution circuitry is used to further study the transients in the power system. The definition of electrical and electromagnetic quantities in relative units is widely used in the theory of electric machines. This is because it significantly simplifies the theoretical calculations and gives the results a generalized view in the practical calculations of currents and residual voltages at the short circuit. By the relative value of any value is understood as its relation to another value of the same name, taken as the base. So, before presenting any quantities in relative units, we need to choose the basic units. In the electrical system with increased voltages, the overall load capacity of the network increases, which in turn makes it possible to supply high-quality electrical energy over a greater distance. In the process of comparing the type of transmission lines, it should be noted that the advantages of the cable transmission line. According to the results of the calculation of short-circuit currents, it can be concluded that in networks with a larger line cross-section and a higher voltage, the short-circuit currents are larger. Thus, during the transition of the electric networks to the higher voltage class of 20 kV, the currents of the KZ increased by 43% compared to the 6 kV electric network. This analysis shows that the importance of reliable power supply in the power supply system for high voltage classes must be high and have equipment to prevent emergencies. In the future, it is planned to develop a systematic calculation of short-circuit currents for a number of transmission lines and to conduct mathematical modeling in the system of applications for the study of transient processes at short circuits.


Author(s):  
Farhana Mohamad Yusop ◽  
Mohamad Kamarol Mohd Jamil ◽  
Dahaman Ishak ◽  
Muhamad Husaini ◽  
Syafrudin Masri

1997 ◽  
Vol 117 (11) ◽  
pp. 1442-1447
Author(s):  
M. Isozaki ◽  
T. Hikosaka ◽  
Y. Hatakeyama ◽  
M. Yamada ◽  
T. Morita

1992 ◽  
Vol 112 (5) ◽  
pp. 467-476
Author(s):  
Youichi Ishii ◽  
Takehisa Igari ◽  
Tomoyuki Ichikawa ◽  
Yutaka Aoki

Sign in / Sign up

Export Citation Format

Share Document