scholarly journals Sorption Capacity of Sandy Soil Under Long-Term Fertilisation

2019 ◽  
Vol 65 (4) ◽  
pp. 164-171 ◽  
Author(s):  
Vladimír Šimanský ◽  
Jerzy Jonczak

Abstract In this paper, the results of an investigation of the effects of particle-size distribution, soil organic matter content and its parameters on soil sorption capacity are presented and their mutual relationships in sandy soils under long-term fertilisation experiments are determined. Soil samples were taken at the experimental station of Warsaw University of Life Sciences located in Skierniewice, (Poland) in spring 2017. The study included 94- and 41-year-old experiments with mineral fertilisation (no fertilisation, NPK, CaNPK) and 25-year-old experiment with mineral fertilisation + farmyard manure (FYM) in 4-year cycle: FYM, FYM+NPK and FYM+CaNPK. The results show that in the 94-year-old experiment in NPK and CaNPK treatments, hydrolytic acidity (Ha) decreased in comparison with the control by 30% and 88%, respectively, while in 25- and 41-year-old experiments only the application of NPK significantly increased Ha values. The sum of basic cations increased by a factor of 10 at the most in the CaNPK treatment in the 94-year-old experiment. The same effect was also observed in the 25-year-old experiment. On the one hand, the sorption complex gradually became fully saturated as a result of fertilisation in the 94-year-old experiment. On the other hand, in the 25- and 41-year-old experiments, base saturation was substantially reduced. A higher humus stability was an important agent for improving soil sorption capacity in 41- and 94-year old experiments.

2010 ◽  
Vol 58 (Supplement 1) ◽  
pp. 35-40
Author(s):  
S. Hoffmann ◽  
K. Berecz ◽  
S. Simon

Increasing doses of farmyard manure (FYM) or equivalent mineral NPK fertilizers and their combinations were analysed in a crop rotation with potato, maize and winter wheat with special regard to their long-term influence on soil fertility. The yield-increasing capacity of FYM doses was only 82%, as compared to the equivalent amount of mineral NPK. Fairly high N release (50.9 kg ha −1 ) could be observed on the unfertilized plots. Great differences in N utilization were recorded, depending on the form and dose of fertilizers. The average N utilization from FYM was only 29.3%, while that of the equivalent fertilizer application was 49.8%. The lowest soil reactions were observed without fertilization and at the highest NPK doses. Negative N balances generally resulted in low soil organic matter content. FYM and equivalent NPK fertilizers had a similar influence on the ammonium lactate (AL)-extractable K 2 O content of the soil, while an increase in the AL-P 2 O 5 content could be observed in the case of mineral fertilization.


1994 ◽  
Vol 119 (2) ◽  
pp. 216-222 ◽  
Author(s):  
Ian A. Merwin ◽  
Warren C. Stiles ◽  
Harold M. van Es

This study was conducted to compare various orchard groundcover management systems (GMSs)—including a crownvetch “living mulch” (CNVCH), close-mowed (MWSOD) and chemically growth-regulated (GRSOD) sodgrasses, pre-emergence (NDPQT) and two widths of post-emergence (GLY1.5 and GLY2.5) herbicides, hay-straw mulch (STMCH), and monthly rototillage (tilled)—during the first 6 years in a newly established apple (Malus domestica Borkh.) planting. Mean soil water potential at 5 to 35 cm deep varied substantially among treatments each summer, and treatment × year interactions were observed. During most growing seasons from 1986 to 1991, soil water availability trends were STMCH > NDPQT > GLY2.5 > GLY1.5 > tilled > GRSOD > MWSOD > CNVCH. Soil organic matter content increased under STMCH, CNVCH, and MWSOD and decreased under NDPQT and tilled treatments. Water infiltration and saturated hydraulic conductivity after 4 years were lower under NDPQT and tilled, and soil under STMCH and GRSOD retained more water per unit volume at applied pressures approximating field water capacity. Mid-summer soil temperatures at 5 cm deep were highest (25 to 28C) in tilled and NDPQT plots, intermediate (22 to 24C) under GRSOD, and lowest (16 to 20C) under CNVCH and STMCH. These observations indicate that long-term soil fertility and orchard productivity may be diminished under pre-emergence herbicides and mechanical cultivation in comparison with certain other GMSs.


2020 ◽  
Author(s):  
Jerzy Lipiec ◽  
Boguslaw Usowicz ◽  
Jerzy Klopotek ◽  
Marcin Turski ◽  
Magdalena Frac

<p>The aim of this study was to evaluate the effects of long-term application of exogenous organic matter on soil organic matter and water storage. Addition of organic matter is of importance in sandy soils that are in general poor in organic matter, acidic, conducive to drought and used in agricultural production throughout the world. In this study the sandy podzol (63-74% sand) was amended with chicken manure or waste spent mushroom substrate through more than 20 years. Soil organic matter content, water retention curves, acidity and structural stability were determined at three depths in the top 60 cm in organic amended and control plots. Enrichment of the soil with chicken manure and spent mushroom substrate caused increase in soil organic matter content in the top 0-20 cm from 1.34 to 3.50% and from 0.86 to 4.71%, respectively. Corresponding increases in field water capacity were from 13.6 to 31.8 m<sup>3</sup> m<sup>−3</sup> and from 17.7 to 27.2 m<sup>3</sup> m<sup>−3</sup>. Both amendments improved soil structure, reaction and nutrient status. In general, these positive effects were greater in chicken manure than spent mushroom substrate amended soil and less pronounced at depths 20-40 cm and 40-60 cm compared to upper soil. Increase in the field water capacity and water storage capacity made the soils amended with  organic matter more drought resistant. Our findings provide valuable insights the spent mushroom substrate left after growing the mushrooms and chicken manure are environmentally friendly and economical viable soil management practices to increase soil quality and crop productivity.</p><p> </p><p> Acknowledgements</p><p>The work was partially funded by the HORIZON 2020, European Commission, Programme: H2020-SFS-4-2014: Soil quality and function, project No. 635750, Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience (iSQAPER, 2015–2020).</p>


2020 ◽  
Vol 117 (3) ◽  
pp. 351-365
Author(s):  
J. Pijlman ◽  
G. Holshof ◽  
W. van den Berg ◽  
G. H. Ros ◽  
J. W. Erisman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document