scholarly journals Nonlinear control for a diesel engine: A CLF-based approach

2014 ◽  
Vol 24 (4) ◽  
pp. 821-835 ◽  
Author(s):  
Olena Kuzmych ◽  
Abdel Aitouche ◽  
Ahmed El Hajjaji ◽  
Jerome Bosche

Abstract In this paper, we propose a control Lyapunov function based on a nonlinear controller for a turbocharged diesel engine. A model-based approach is used which predicts the experimentally observed engine performance for a biodiesel. The basic idea is to develop an inverse optimal control and to employ a Lyapunov function in order to achieve good performances. The obtained controller gain guarantees the global convergence of the system and regulates the flows for the variable geometry turbocharger as well as exhaust gas recirculation systems in order to minimize the NOx emission and the smoke of a biodiesel engine. Simulation of the control performances based on professional software and experimental results show the effectiveness of this approach.

Author(s):  
T J Rychter ◽  
A Teodorczyk ◽  
C R Stone ◽  
H J Leonard ◽  
N Ladommatos ◽  
...  

A variable compression ratio concept that can give a different expansion ratio to the compression ratio has been evaluated by means of a simulation of a turbocharged diesel engine. The compression ratio is controlled by varying the ratio of the connecting rod length to the crank throw, hence the name variable crank radius/connecting rod length engine (VR/LE). The VR/LE mechanism kinematics have been defined and described, and the compression ratio and expansion ratio have been presented as a function of the eccentric phase angle (αo). A zero-dimensional engine simulation that has been the subject of comprehensive validation has been used as the basis of the VR/LE study. The effect of the compression ratio on the engine performance at fixed loads is presented. The principal benefits are a reduction in fuel consumption at part load of about 2 per cent and a reduction in ignition delay that leads to an estimated 6 dB reduction in combustion noise. The study has been conducted within the assumption of a maximum cylinder pressure of 160 bar.


2016 ◽  
Vol 34 (1) ◽  
pp. 21-27
Author(s):  
H.-W. Wu ◽  
T.-Z. Hsu ◽  
W.-H. Lai

AbstractWith good combustion characteristics, hydrogen has been developing as a clean alternative fuel of engines. This study is to develop a diesel/hydrogen dual fuel engine. The hydrogen was added at inlet port in a 4-cylinder direct injection turbocharged diesel engine with an EGR (Exhaust Gas Recirculation) system to investigate engine performance and exhaust pollutant. The measured items are composed of the gas pressure of cylinder, crank angle, consumption rate of diesel, consumption rate of hydrogen, air flow rate, emissions (HC, CO2, NOX, and Smoke), and so on. The authors analyze how the addition of hydrogen with EGR system influences the engine performance and emissions. The diesel/hydrogen dual fuel turbocharged engine can increase the brake thermal efficiency with a greater decrease in emissions compared with the turbocharged diesel engine. Furthermore, the authors little altered the engine structure to get the positive effect of energy saving and pollutant decreasing.


Author(s):  
Ming Zheng ◽  
David K. Irick ◽  
Jeffrey Hodgson

For diesel engines (CIDI) the excessive use of exhaust gas recirculation (EGR) can reduce in-cylinder oxides of nitrogen (NOx) generation dramatically, but engine operation can also approach zones with high instabilities, usually accompanied with high cycle-to-cycle variations and deteriorated emissions of total hydrocarbon (THC), carbon monoxide (CO), and soot. A new approach has been proposed and tested to eliminate the influences of recycled combustibles on such instabilities, by applying an oxidation catalyst in the high-pressure EGR loop of a turbocharged diesel engine. The testing was directed to identifying the thresholds of stable operation at high rates of EGR without causing cycle-to-cycle variations associated with untreated recycled combustibles. The elimination of recycled combustibles using the oxidation catalyst showed significant influences on stabilizing the cyclic variations, so that the EGR applicable limits are effectively extended. The attainability of low NOx emissions with the catalytically oxidized EGR is also evaluated.


Author(s):  
F. Maroteaux ◽  
G. Descombes ◽  
F. Sauton

Abstract This research investigates engine performance and the potential of reducing exhaust emissions by using Dimethyl Ether (DME) which is an alternative fuel for diesel engines. The objective of this study it to evaluate (on the bed test) the performance and emissions reduction potential of an engine running with DME. A 4 cylinder passenger car HSDI Common Rail turbocharged diesel engine without specific modifications was used. The results obtained on this engine running with DME using diesel fuel as reference are encouraging. In the next steps of this study the injection rate will be adapted to DME operation and to the geometric and thermodynamic conditions of the combustion reaction. A study of the combustion reaction is also necessary in order to optimize the turbocharging system to exclusive DME operation.


Sign in / Sign up

Export Citation Format

Share Document