turbocharging system
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 23)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Mingyang Yang ◽  
Lei Pan ◽  
Mengying Shu ◽  
Kangyao Deng ◽  
Zhanming Ding ◽  
...  

Two-stage turbocharging becomes prevailing in internal combustion engines due to its advantage of flexibility of boosting for the variation of operational conditions. Two turbochargers are closely coupled by engine manifolds in the system especially under the requirement of compactness. This paper studies the influence of the interaction of two turbines in a two-stage turbocharging system on the performance. Results show that the performance of low-pressure turbine is highly sensitive to the stage interaction. Specifically, compared with the cases without interaction, the efficiency of low-pressure turbine increases maximumly by 2.8% when the bypass valve is closed, but reduces drastically by 7.5% when the valve is open. Detailed flow analysis shows that the combined results of swirling flow from the high-pressure turbine and the Dean vortex caused by the manifold elbow result in the alleviation of entropy generation in the turbine rotor. However, when the bypass valve is open, interaction of the swirling flow with the injected bypass flow results in strong secondary flow in the volute and distorted inlet flow condition for the rotor, leading to the enhancement of entropy generation in low-pressure turbine. The study provides valuable insights into turbine performance in a two-stage turbocharging system, which can be used for the modeling and optimization of multi-stage turbocharging systems.


2021 ◽  
pp. 146808742110601
Author(s):  
Silvia Marelli ◽  
Vittorio Usai

Due to the increasingly restrictive limits of pollutant emissions, electrification of automotive engines is now mandatory. For this reason, adopting hybrid boosting systems to improve brake specific fuel consumption and time-to-boost is becoming common practice. In this paper an advanced turbocharging system is analyzed, consisting in an electrically assisted radial compressor and a traditional turbocharger. As a first step, the steady-state performance of each component was measured at the University of Genoa test rig. Subsequently another experimental campaign was carried out to evaluate the transient response of the entire turbocharging system. Two different layouts were compared: upstream and downstream. In the upstream configuration the electrically assisted compressor was placed in front of the traditional turbocharger, in the downstream configuration the e-compressor was positioned after the traditional turbocharger. The two different coupling configurations, upstream and downstream, were then modeled in 1-D simulation software following the dimensions and characteristics of the experimental line from which the exploited data originates. The models were first validated by emulating the steady-state condition and subsequently the transient response was simulated and analyzed. Secondly, the transient response of the two layouts was compared, removing the constraints imposed by the experimental activity. The practical significance of the results is outlined, with reference to the transient response of the turbocharger. The adoption of the boosting system presented here allows a fast and stable transient response. Moreover, a reduction in the engine back pressure could be achieved through an optimization of the boosting system-engine matching calculation.


2021 ◽  
pp. 146808742110397
Author(s):  
Panagiotis Mizythras ◽  
Evangelos Boulougouris ◽  
Gerasimos Theotokatos

The matching of the turbocharging system with a marine engine is an essential undertaking due to the turbocharger effects on the engine performance, emissions and response, whilst the limited data availability during the ship design phase renders it challenging. This study aims at developing a novel methodology for the matching of a single turbocharger and multiple turbochargers connected in parallel with marine engines. This methodology employs a compressor parametric modelling tool and a zero-dimensional engine model, whilst taking into account the engine operational profile and the turbocharger components flow limitations. The compressor parametric tool is used for the generation of a database with compressor families that can be investigated during the matching procedure. The model of one engine cylinder block is used for mapping the engine performance parameters at a wide engine operating envelope by developing response surfaces. The developed methodology is implemented for the case study of the turbocharger matching with the propulsion engine of an Aframax tanker. The annual fuel consumption and the engine load diagram upper limit are employed as the main objectives for the selection the turbocharging system. The derived results demonstrate that the effective turbocharger matching results in reducing the engine brake specific fuel consumption up to 5%. The identified turbochargers led to the reduction of the ship annual fuel consumption in the range 1.3%–5.3% compared to the reference engine, whilst providing a more expanded load diagram. This study overcomes the limitations of the manual engine turbocharger–matching process providing decision support on the effective turbocharger matching to satisfy contradictory objectives.


Author(s):  
A. N. Berdnik ◽  
V. O. Remeslovskiy

A method for calculating the non-stationary gas flow in the exhaust pipeline of a piston engine by the method of solitary waves of finite amplitude is presented. The comparison of experimental data and calculation results by the method of characteristics and obtained when considering the process of propagation of solitary waves through the exhaust pipeline of a piston engine equipped with a pulsed turbocharging system is shown.


Author(s):  
A. N. Berdnik

The analysis of existing methods for assessing the loss of gases performance in the flow part of turbocharging system of piston engine is presented. It is shown that the exergy method provides a complete picture about of local energy transformations in the intake and exhaust systems of a piston engine, which makes it possible to use it to evaluate the efficiency of turbocharging system of piston engine with power turbine when forcing a piston engine by on the average effective pressure.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2043
Author(s):  
Dariusz Kozak ◽  
Paweł Mazuro

In recent years, the automotive sector has been focused on emission reductions using hybrid and electric vehicles. This was mainly caused by political trends promoting “green energy”. However, that does not mean that internal combustion engines (ICEs) should be forgotten. The ICE has still the potential of recovering energy from exhaust gases. One of the promising ways to recover energy is turbocharging. Over the years engine manufacturers have designed very efficient turbocharger systems which have greatly increased the overall engine efficiency. This led to pollutant emission reductions. This paper presents the results of the three-dimensional (3-D) numerical simulations of the two-stage, six-inlet turbocharging system under the influence of unsteady, pulsed-flow conditions. The calculations were carried out for three turbine speeds. The most interesting results of this study were the separation of exhaust gases coming from the six-exhaust pipes and the performance of both stages under pulse-flow conditions. The two-stage turbocharging system was compared against the single-stage turbocharging system and the results showed that the newly designed two-stage turbine system properly separated the exhaust gases of the adjacent exhaust pipes.


Sign in / Sign up

Export Citation Format

Share Document