scholarly journals On graphs with minimal distance signless Laplacian energy

2021 ◽  
Vol 13 (2) ◽  
pp. 450-467
Author(s):  
S. Pirzada ◽  
Bilal A. Rather ◽  
Rezwan Ul Shaban ◽  
Merajuddin

Abstract For a simple connected graph G of order n having distance signless Laplacian eigenvalues ρ 1 Q ≥ ρ 2 Q ≥ ⋯ ≥ ρ n Q \rho _1^Q \ge \rho _2^Q \ge \cdots \ge \rho _n^Q , the distance signless Laplacian energy DSLE(G) is defined as D S L E ( G ) = ∑ i = 1 n | ρ i Q - 2 W ( G ) n | DSLE\left( G \right) = \sum\nolimits_{i = 1}^n {\left| {\rho _i^Q - {{2W\left( G \right)} \over n}} \right|} where W(G) is the Weiner index of G. We show that the complete split graph has the minimum distance signless Laplacian energy among all connected graphs with given independence number. Further, we prove that the graph Kk ∨ ( Kt∪ Kn−k−t), 1 ≤ t ≤ ⌊ n - k 2 ⌋ 1 \le t \le \left\lfloor {{{n - k} \over 2}} \right\rfloor has the minimum distance signless Laplacian energy among all connected graphs with vertex connectivity k.

2020 ◽  
Vol 12 (05) ◽  
pp. 2050061 ◽  
Author(s):  
Hilal A. Ganie

For a simple connected graph [Formula: see text] of order [Formula: see text] having distance Laplacian eigenvalues [Formula: see text], the distance Laplacian energy [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the Wiener index of [Formula: see text]. We obtain the distance Laplacian spectrum of the joined union of graphs [Formula: see text] in terms of their distance Laplacian spectrum and the spectrum of an auxiliary matrix. As application, we obtain the distance Laplacian spectrum of the lexicographic product of graphs. We study the distance Laplacian energy of connected graphs with given chromatic number [Formula: see text]. We show that among all connected graphs with chromatic number [Formula: see text] the complete [Formula: see text]-partite graph has the minimum distance Laplacian energy. Further, we discuss the distribution of distance Laplacian eigenvalues around average transmission degree [Formula: see text].


2017 ◽  
Vol 32 ◽  
pp. 438-446 ◽  
Author(s):  
Dan Li ◽  
Guoping Wang ◽  
Jixiang Meng

Let \eta(G) denote the distance signless Laplacian spectral radius of a connected graph G. In this paper,bounds for the distance signless Laplacian spectral radius of connected graphs are given, and the extremal graph with the minimal distance signless Laplacian spectral radius among the graphs with given vertex connectivity and minimum degree is determined. Furthermore, the digraph that minimizes the distance signless Laplacian spectral radius with given vertex connectivity is characterized.


Filomat ◽  
2020 ◽  
Vol 34 (3) ◽  
pp. 1025-1033
Author(s):  
Predrag Milosevic ◽  
Emina Milovanovic ◽  
Marjan Matejic ◽  
Igor Milovanovic

Let G be a simple connected graph of order n and size m, vertex degree sequence d1 ? d2 ?...? dn > 0, and let ?1 ? ? 2 ? ... ? ?n-1 > ?n = 0 be the eigenvalues of its Laplacian matrix. Laplacian energy LE, Laplacian-energy-like invariant LEL and Kirchhoff index Kf, are graph invariants defined in terms of Laplacian eigenvalues. These are, respectively, defined as LE(G) = ?n,i=1 |?i-2m/n|, LEL(G) = ?n-1 i=1 ??i and Kf (G) = n ?n-1,i=1 1/?i. A vertex-degree-based topological index referred to as degree deviation is defined as S(G) = ?n,i=1 |di- 2m/n|. Relations between Kf and LE, Kf and LEL, as well as Kf and S are obtained.


2019 ◽  
Vol 12 (01) ◽  
pp. 2050006 ◽  
Author(s):  
A. Alhevaz ◽  
M. Baghipur ◽  
E. Hashemi ◽  
S. Paul

The distance signless Laplacian matrix of a connected graph [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix of vertex transmissions of [Formula: see text]. If [Formula: see text] are the distance signless Laplacian eigenvalues of a simple graph [Formula: see text] of order [Formula: see text] then we put forward the graph invariants [Formula: see text] and [Formula: see text] for the sum of [Formula: see text]-largest and the sum of [Formula: see text]-smallest distance signless Laplacian eigenvalues of a graph [Formula: see text], respectively. We obtain lower bounds for the invariants [Formula: see text] and [Formula: see text]. Then, we present some inequalities between the vertex transmissions, distance eigenvalues, distance Laplacian eigenvalues, and distance signless Laplacian eigenvalues of graphs. Finally, we give some new results and bounds for the distance signless Laplacian energy of graphs.


2018 ◽  
Vol 10 (2) ◽  
pp. 218-240
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Ebrahim Hashemi ◽  
Yaser Alizadeh

Abstract Let G be a simple connected graph. The reciprocal transmission Tr′G(ν) of a vertex ν is defined as $${\rm{Tr}}_{\rm{G}}^\prime ({\rm{\nu }}) = \sum\limits_{{\rm{u}} \in {\rm{V}}(G)} {{1 \over {{{\rm{d}}_{\rm{G}}}(u,{\rm{\nu }})}}{\rm{u}} \ne {\rm{\nu }}.} $$ The reciprocal distance signless Laplacian (briefly RDSL) matrix of a connected graph G is defined as RQ(G)= diag(Tr′ (G)) + RD(G), where RD(G) is the Harary matrix (reciprocal distance matrix) of G and diag(Tr′ (G)) is the diagonal matrix of the vertex reciprocal transmissions in G. In this paper, we investigate the RDSL spectrum of some classes of graphs that are arisen from graph operations such as cartesian product, extended double cover product and InduBala product. We introduce minimum covering reciprocal distance signless Laplacian matrix (or briey MCRDSL matrix) of G as the square matrix of order n, RQC(G) := (qi;j), $${{\rm{q}}_{{\rm{ij}}}} = \left\{ {\matrix{ {1 + {\rm{Tr}}\prime ({{\rm{\nu }}_{\rm{i}}})} & {{\rm{if}}} & {{\rm{i = j}}} & {{\rm{and}}} & {{{\rm{\nu }}_{\rm{i}}} \in {\rm{C}}} \cr {{\rm{Tr}}\prime ({{\rm{\nu }}_{\rm{i}}})} & {{\rm{if}}} & {{\rm{i = j}}} & {{\rm{and}}} & {{{\rm{\nu }}_{\rm{i}}} \notin {\rm{C}}} \cr {{1 \over {{\rm{d(}}{{\rm{\nu }}_{\rm{i}}},{{\rm{\nu }}_{\rm{j}}})}}} & {{\rm{otherwise}}} & {} & {} & {} \cr } } \right.$$ where C is a minimum vertex cover set of G. MCRDSL energy of a graph G is defined as sum of eigenvalues of RQC. Extremal graphs with respect to MCRDSL energy of graph are characterized. We also obtain some bounds on MCRDSL energy of a graph and MCRDSL spectral radius of 𝒢, which is the largest eigenvalue of the matrix RQC (G) of graphs.


2019 ◽  
Vol 17 (1) ◽  
pp. 883-893
Author(s):  
Shu-Yu Cui ◽  
Gui-Xian Tian

Abstract Given a simple graph G, its Laplacian-energy-like invariant LEL(G) and incidence energy IE(G) are the sum of square root of its all Laplacian eigenvalues and signless Laplacian eigenvalues, respectively. This paper obtains some improved bounds on LEL and IE of the 𝓡-graph and 𝓠-graph for a regular graph. Theoretical analysis indicates that these results improve some known results. In addition, some new lower bounds on LEL and IE of the line graph of a semiregular graph are also given.


Filomat ◽  
2017 ◽  
Vol 31 (18) ◽  
pp. 5545-5551
Author(s):  
Kinkar Das ◽  
Muhuo Liu

Let G = (V,E) be a simple connected graph. Denote by D(G) the diagonal matrix of its vertex degrees and by A(G) its adjacency matrix. Then the Laplacian matrix of graph G is L(G) = D(G)-A(G). Let a(G) and ?(G), respectively, be the second smallest Laplacian eigenvalue and the independence number of graph G. In this paper, we characterize the extremal graph with second minimum value for addition of algebraic connectivity and independence number among all connected graphs with n ? 6 vertices (Actually, we can determine the p-th minimum value of a(G)+ ?(G) under certain condition when p is small). Moreover, we present a lower bound to the addition of algebraic connectivity and radius of connected graphs.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 426 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Kinkar Ch. Das ◽  
Yilun Shang

Given a simple connected graph G, let D ( G ) be the distance matrix, D L ( G ) be the distance Laplacian matrix, D Q ( G ) be the distance signless Laplacian matrix, and T r ( G ) be the vertex transmission diagonal matrix of G. We introduce the generalized distance matrix D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where α ∈ [ 0 , 1 ] . Noting that D 0 ( G ) = D ( G ) , 2 D 1 2 ( G ) = D Q ( G ) , D 1 ( G ) = T r ( G ) and D α ( G ) − D β ( G ) = ( α − β ) D L ( G ) , we reveal that a generalized distance matrix ideally bridges the spectral theories of the three constituent matrices. In this paper, we obtain some sharp upper and lower bounds for the generalized distance energy of a graph G involving different graph invariants. As an application of our results, we will be able to improve some of the recently given bounds in the literature for distance energy and distance signless Laplacian energy of graphs. The extremal graphs of the corresponding bounds are also characterized.


Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Harishchandra Ramane ◽  
Xueliang Li

The distance signless Laplacian eigenvalues [Formula: see text] of a connected graph [Formula: see text] are the eigenvalues of the distance signless Laplacian matrix of [Formula: see text], defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix of vertex transmissions of [Formula: see text]. In this paper, we define and investigate the distance signless Laplacian Estrada index of a graph [Formula: see text] as [Formula: see text], and obtain some upper and lower bounds for [Formula: see text] in terms of other graph invariants. We also obtain some relations between [Formula: see text] and the auxiliary distance signless Laplacian energy of [Formula: see text].


2016 ◽  
Vol 31 ◽  
pp. 27-41 ◽  
Author(s):  
Shariefuddin Pirzada ◽  
Hilal Ganie ◽  
Ivan Gutman

For a simple connected graph G of order n, having Laplacian eigenvalues μ_1, μ_2, . . . ,μ_{n−1}, μ_n = 0, the Laplacian–energy–like invariant (LEL) and the Kirchhoff index (Kf) are defined as LEL(G) = \sum_{i=1}^{n-1} \sqrt{μ_i} Kf(G) = \sum_{i=1}^{n-1} 1/μ_i, respectively. In this paper, LEL and Kf arecompared, and sufficient conditions for the inequality Kf(G) < LEL(G) are established.


Sign in / Sign up

Export Citation Format

Share Document