Approximation of the Operator Exponential and Applications

2007 ◽  
Vol 7 (4) ◽  
pp. 294-320 ◽  
Author(s):  
I.P. Gavrilyuk

AbstractA review of the exponentially convergent approximations to the operator exponential is given. The applications to inhomogeneous parabolic and elliptic equations, nonlinear parabolic equations, tensor-product approximations of multidimensional solution operators as well as to parabolic problems with time dependent coefficients and boundary conditions are discussed.

2001 ◽  
Vol 08 (01) ◽  
pp. 19-27 ◽  
Author(s):  
R. F. Streater

We study coupled nonlinear parabolic equations for a fluid described by a material density ρ and a temperature Θ, both functions of space and time. In one dimension, we find some stationary solutions corresponding to fixing the temperature on the boundary, with no-escape boundary conditions for the material. For the special case, where the temperature on the boundary is the same at both ends, the linearized equations for small perturbations about a stationary solution at uniform temperature and density are derived; they are subject to boundary conditions, Dirichlet for Θ and no-flow conditions for the material. The spectrum of the generator L of time evolution, regarded as an operator on L2[0,1], is shown to be real, discrete and non-positive, even though L is not self-adjoint. This result is necessary for the stability of the stationary state, but might not be sufficient. The problem lies in the fact that L is not a sectorial operator, since its numerical range is ℂ.


Author(s):  
Francesco Petitta

In this paper we prove a non-existence result for nonlinear parabolic problems with zero lower-order terms whose model iswhere Δp=div(|∇u|p−2∇u) is the usual p-laplace operator, λ is measure concentrated on a set of zero parabolic r-capacity (1<p<r) and q is large enough.


2016 ◽  
Vol 23 (3) ◽  
pp. 303-321 ◽  
Author(s):  
Youssef Akdim ◽  
Abdelmoujib Benkirane ◽  
Mostafa El Moumni ◽  
Hicham Redwane

AbstractWe study the existence result of a renormalized solution for a class of nonlinear parabolic equations of the form${\partial b(x,u)\over\partial t}-\operatorname{div}(a(x,t,u,\nabla u))+g(x,t,u% ,\nabla u)+H(x,t,\nabla u)=\mu\quad\text{in }\Omega\times(0,T),$where the right-hand side belongs to ${L^{1}(Q_{T})+L^{p^{\prime}}(0,T;W^{-1,p^{\prime}}(\Omega))}$ and ${b(x,u)}$ is unbounded function of u, ${{-}\operatorname{div}(a(x,t,u,\nabla u))}$ is a Leray–Lions type operator with growth ${|\nabla u|^{p-1}}$ in ${\nabla u}$. The critical growth condition on g is with respect to ${\nabla u}$ and there is no growth condition with respect to u, while the function ${H(x,t,\nabla u)}$ grows as ${|\nabla u|^{p-1}}$.


2020 ◽  
Vol 61 ◽  
pp. C166-C180
Author(s):  
Mohamed Saleh Mehdi Al-Sultani ◽  
Igor Boglaev

The article deals with numerical methods for solving a coupled system of nonlinear parabolic problems, where reaction functions are quasi-monotone nondecreasing. We employ block monotone iterative methods based on the Jacobi and Gauss–Seidel methods incorporated with the upper and lower solutions method. A convergence analysis and the theorem on uniqueness of a solution are discussed. Numerical experiments are presented. References Al-Sultani, M. and Boglaev, I. ''Numerical solution of nonlinear elliptic systems by block monotone iterations''. ANZIAM J. 60:C79–C94, 2019. doi:10.21914/anziamj.v60i0.13986 Al-Sultani, M. ''Numerical solution of nonlinear parabolic systems by block monotone iterations''. Tech. Report, 2019. https://arxiv.org/abs/1905.03599 Boglaev, I. ''Inexact block monotone methods for solving nonlinear elliptic problems'' J. Comput. Appl. Math. 269:109–117, 2014. doi:10.1016/j.cam.2014.03.029 Lui, S. H. ''On monotone iteration and Schwarz methods for nonlinear parabolic PDEs''. J. Comput. Appl. Math. 161:449–468, 2003. doi:doi.org/10.1016/j.cam.2003.06.001 Pao, C. V. Nonlinear parabolic and elliptic equations. Plenum Press, New York, 1992. doi:10.1007/s002110050168 Pao C. V. ''Numerical analysis of coupled systems of nonlinear parabolic equations''. SIAM J. Numer. Anal. 36:393–416, 1999. doi:10.1137/S0036142996313166 Varga, R. S. Matrix iterative analysis. Springer, Berlin, 2000. 10.1007/978-3-642-05156-2 Zhao, Y. Numerical solutions of nonlinear parabolic problems using combined-block iterative methods. Masters Thesis, University of North Carolina, 2003. http://dl.uncw.edu/Etd/2003/zhaoy/yaxizhao.pdf


2019 ◽  
Vol 5 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Mohammed Abdellaoui

AbstractOne of the recent advances in the investigation of nonlinear parabolic equations with a measure as forcing term is a paper by F. Petitta in which it has been introduced the notion of renormalized solutions to the initial parabolic problem in divergence form. Here we continue the study of the stability of renormalized solutions to nonlinear parabolic equations with measures but from a different point of view: we investigate the existence and uniqueness of the following nonlinear initial boundary value problems with absorption term and a possibly sign-changing measure data\left\{ {\matrix{ {b{{\left( u \right)}_t} - {\rm{div}}\left( {a\left( {t,x,u,\nabla u} \right)} \right) + h\left( u \right) = \mu } \hfill & {{\rm{in}}Q: = \left( {0,T} \right) \times {\rm{\Omega }},} \hfill \cr {u = 0} \hfill & {{\rm{on}}\left( {0,T} \right) \times \partial {\rm{\Omega }},} \hfill \cr {b\left( u \right) = b\left( {{u_0}} \right)} \hfill & {{\rm{in}}\,{\rm{\Omega }},} \hfill \cr } } \right.where Ω is an open bounded subset of ℝN, N ≥ 2, T > 0 and Q is the cylinder (0, T) × Ω, Σ = (0, T) × ∂Ω being its lateral surface, the operator is modeled on the p−Laplacian with p > 2 - {1 \over {N + 1}}, μ is a Radon measure with bounded total variation on Q, b is a C1−increasing function which satisfies 0 < b0 ≤ b′(s) ≤ b1 (for positive constants b0 and b1). We assume that b(u0) is an element of L1(Ω) and h : ℝ ↦ ℝ is a continuous function such that h(s) s ≥ 0 for every |s| ≥ L and L ≥ 0 (odd functions for example). The existence of a renormalized solution is obtained by approximation as a consequence of a stability result. We provide a new proof of this stability result, based on the properties of the truncations of renormalized solutions. The approach, which does not need the strong convergence of the truncations of the solutions in the energy space, turns out to be easier and shorter than the original one.


2019 ◽  
Vol 38 (6) ◽  
pp. 99-126
Author(s):  
Abdeslam Talha ◽  
Abdelmoujib Benkirane

In this work, we prove an existence result of entropy solutions in Musielak-Orlicz-Sobolev spaces for a class of nonlinear parabolic equations with two lower order terms and L1-data.


2011 ◽  
Vol 09 (02) ◽  
pp. 161-186 ◽  
Author(s):  
ROSARIA DI NARDO ◽  
FILOMENA FEO ◽  
OLIVIER GUIBÉ

In this paper, we prove, the existence of a renormalized solution for a class of nonlinear parabolic problems whose prototype is [Formula: see text] where QT = Ω × (0, T), Ω is an open and bounded subset of ℝN, N ≥ 2, T > 0, Δp is the so called p-Laplace operator, [Formula: see text], c ∈ (Lr(QT))N with [Formula: see text], [Formula: see text], b ∈ LN+2, 1(QT), f ∈ L1(QT), g ∈ (Lp'(QT))N and u0 ∈ L1(Ω).


Sign in / Sign up

Export Citation Format

Share Document