scholarly journals Floral Morphology and Some Other Characteristics of Iso-genomic Alloplasmics of Nicotianatabacum L.

Author(s):  
A Berbec

AbstractCytoplasms of several Nicotiana species - N. amplexicaulis, N. bigelovii, N. debneyi, N. eastii, N. exigua, N. glauca, N. glutinosa, N. goodspeedii, N. knightiana, N. occidentalis, N. plumbaginifolia, N. raimondii, N. suaveolens, N. undulata - were bred into the N. tabacum genomic background of flue cured tobacco cv. Zamojska 4. The collection includes also a cytoplasmic male sterile (cms) analogue of cv. Zamojska 4 with mutated cytoplasm of N. tabacum. Some of the alloplasmics were originally obtained in this laboratory (N. amplexicaulis, N. eastii, N. exigua, N. glauca, N. knightiana, N. raimondii). The remaining ones were acquired from other laboratories and backcrossed into Zamojska 4. All alien cytoplasms except that of N. knightiana produced full male sterility in Zamojska 4. The extent of male organ modifications varied from complete absence of stamens (N. suaveolens, N. tabacum) to petaloid and stigmatoid structures (most common effect) to malformed stamens (N. amplexicaulis, N. glauca) to apparently normal stamens (N. raimondii, N. knightiana). The majority of the alloplasmics showed response to tentoxin that was compatible with the cytoplasm donor. The exceptions were those involving N. exigua, N. raimondii, (N. raimondii I), and the cytoplasmic mutant of N. tabacum. There was some variation in growth and morphology among the alloplasmic variants of Zamojska 4. Under field infestation alloplasmics with the cytoplasm of N. plumbaginifoliaand N. eastiishowed symptoms of blue mold whereas the remaining alloplasmics and cv. Zamojska 4 were highly tolerant of that disease.

2012 ◽  
Vol 92 (15) ◽  
pp. 3046-3054 ◽  
Author(s):  
Jingyi Zhang ◽  
Changwei Zhang ◽  
Yan Cheng ◽  
Li Qi ◽  
Shumin Wang ◽  
...  

2016 ◽  
Vol 113 (49) ◽  
pp. 14145-14150 ◽  
Author(s):  
Zhenyi Chang ◽  
Zhufeng Chen ◽  
Na Wang ◽  
Gang Xie ◽  
Jiawei Lu ◽  
...  

The breeding and large-scale adoption of hybrid seeds is an important achievement in agriculture. Rice hybrid seed production uses cytoplasmic male sterile lines or photoperiod/thermo-sensitive genic male sterile lines (PTGMS) as female parent. Cytoplasmic male sterile lines are propagated via cross-pollination by corresponding maintainer lines, whereas PTGMS lines are propagated via self-pollination under environmental conditions restoring male fertility. Despite huge successes, both systems have their intrinsic drawbacks. Here, we constructed a rice male sterility system using a nuclear gene named Oryza sativa No Pollen 1 (OsNP1). OsNP1 encodes a putative glucose–methanol–choline oxidoreductase regulating tapetum degeneration and pollen exine formation; it is specifically expressed in the tapetum and miscrospores. The osnp1 mutant plant displays normal vegetative growth but complete male sterility insensitive to environmental conditions. OsNP1 was coupled with an α-amylase gene to devitalize transgenic pollen and the red fluorescence protein (DsRed) gene to mark transgenic seed and transformed into the osnp1 mutant. Self-pollination of the transgenic plant carrying a single hemizygous transgene produced nontransgenic male sterile and transgenic fertile seeds in 1:1 ratio that can be sorted out based on the red fluorescence coded by DsRed. Cross-pollination of the fertile transgenic plants to the nontransgenic male sterile plants propagated the male sterile seeds of high purity. The male sterile line was crossed with ∼1,200 individual rice germplasms available. Approximately 85% of the F1s outperformed their parents in per plant yield, and 10% out-yielded the best local cultivars, indicating that the technology is promising in hybrid rice breeding and production.


Author(s):  
V Nikova ◽  
R Vladova

AbstractThe results of our experiments executed to obtain tobacco male sterile lines through interspecific hybridization are summarized. Ten wild species from the genus Nicotiana: N. excelsior (exc), N. amplexicaulis (amp), N. rustica (rus), Nicotianaglauca (gla), N. velutina (vel), N. benthamiana (ben), N. maritima (mar), N. paniculata (pan), N. longiflora (lon) and N. africana (afr) were used as cytoplasmic donors and N. tabacum, cv. HarmanliiskaBasma (HB) as a donor of the nucleus. Genetic effects of cytoplasmic-nuclear interaction of the studied species are discussed. Our results suggested that cytoplasmic male sterility (CMS) was expressed when the cytoplasms of the above mentioned wild Nicotiana species were combined with the nucleus of N. tabacum. The 10 sources of CMS obtained in tobacco were characterized by altered flower phenotypes. Flowers are classified into types according the stamen, pistil and corolla modification. All these CMS sources were backcrossed to Oriental tobaccos, cvs. Tekne, Nevrokop B-12, Kroumovgrad 90 and Djebel 576, to develop corresponding CMS lines. The investigated cytoplasms produced compete male sterility in all those cultivars. The CMS lines preserved flower types, specific for every “sterile” cytoplasm. The extent of male organ modifications varied from apparently normal (but pollenless) stamens in CMS (pan), (afr), some plants of (vel) (mar) through different degrees of malformations (shriveled anther on shortened filaments (lon), pinnate-like anthers on filaments of normal length (amp), petal - (ben), pistil- or stigma-like structures (rus), (gla)) to lack of male reproductive organs in (exc) and in some plants of (vel), (mar), (rus) and (gla). Most of the above mentioned cytoplasms had normal female gametophyte and good seed productivity. Alterations of the pistils were observed in CMS (rus), (exc) and (ben) causing reduction of the seed set. Electrophoresis of seed proteins of the tobacco cultivars and their CMS lines also suggested that the nuclei of wild species was entirely displaced by the nucleus of N. tabacum. CMS lines with cytoplasms of N. velutina, N. maritima, N. paniculata, N. longiflora and N. amplexicaulis were selected as suitable for seed production in tobacco.


2003 ◽  
Vol 83 (2) ◽  
pp. 261-269 ◽  
Author(s):  
T. C. Riungu ◽  
P. B. E. McVetty

The Diplotaxis muralis male sterility inducing cytoplasm (mur cytoplasm) and its maintainer genes were transferred from the winter rapeseed male sterile line Mangun mur CMS A-line and the mur CMS maintainer line Mangun mur CMS B-line, respectively, into summer rape lines genetically related to the open-pollinated population cultivars Regent and Karat using standard cross, backcross and test cross breeding procedures. Three genetically identical summer rape mur CMS A-line and B-line pairs, Karat I A-line and B-line, Karat II A-line and B-line and Regent A-line and B line were developed. Flower morphology studies revealed that the mur CMS A-lines had anthers displaying a complete absence of pollen and floral morphology modifications similar to that seen for other CMS systems in summer rape. Seedling emergence, days to first flower, days to maturity, and height of the vernalized mur CMS Mangun A-line and B-line pair and the summer rape mur CMS A-line and B-line pairs were similar among treatments and equal for A-line and B-line pair comparisons within cultivars for plants grown in the greenhouse. There was no evidence of biological benefits or costs associated with the mur cytoplasm. The male sterility for the vernalized Mangun mur CMS A-line and the summer rape mur CMS A-lines was stable at temperatures up to 30/24EC. Key words: Brassica napus L., male sterility, temperature stability


2000 ◽  
Vol 80 (3) ◽  
pp. 587-589 ◽  
Author(s):  
Teresio C. Riungu ◽  
Peter B. E. McVetty

No male sterile plants were found in the F1 progeny from crosses between a Diplotaxis muralis cytoplasmic male sterile (mur CMS) semi-winter habit rape (Brassica napus L.) A-line and 101 genetically diverse summer rape cultivars or strains. The frequency of occurrence of mur CMS system maintainer genotypes in summer rape is very low, possibly zero. Key words: Mur CMS system; Brassica napus L.


1988 ◽  
Vol 66 (8) ◽  
pp. 1676-1680 ◽  
Author(s):  
Phan V. Chuong ◽  
K. P. Pauls ◽  
W. D. Beversdorf

Microspores from several Polima cytoplasmic male sterile (Pol-CMS) and Diplotaxis muralis male sterile (Mur-MS) oilseed rape lines were cultured in a modified Nitsch and Nitsch medium in the dark for 4 weeks. High androgenic frequencies were observed in microspore cultures initiated from plants of both male sterile (MS) types. In cultures maintained at a constant temperature (30 °C) 1 or 2% of the microspores from Pol-CMS or Mur-MS lines, respectively, developed into embryos. A greater percentage of the embryos obtained from the Pol-CMS lines were of good quality than those obtained from the Mur-MS lines (25 vs. 5%). Twenty percent of the plants regenerated from embryos of both lines were spontaneous doubled haploids. The results suggest that no unfavorable cytoplasmic–nuclear genome interaction affecting androgenic potential exists in plants exhibiting Polima or Diplotaxis muralis male sterility.


Sign in / Sign up

Export Citation Format

Share Document