scholarly journals Exact Solution Of MHD Mixed Convection Periodic Flow In A Rotating Vertical Channel With Heat Radiation

2013 ◽  
Vol 18 (3) ◽  
pp. 853-869 ◽  
Author(s):  
K.D. Singh

Abstract Magnetohydrodynamic (MHD) mixed convection flow of a viscous, incompressible and electrically conducting fluid in a vertical channel is analyzed analytically. A magnetic field of uniform strength is applied perpendicular to the planes of the channel walls. The fluid is acted upon by a periodic variation of the pressure gradient in the vertically upward direction. The temperature of one of the plates is non-uniform and the temperature difference of the walls of the channel is high enough to induce heat transfer due to radiation. The fluid and the channel rotate in unison with an angular velocity about the axis normal to the plates of the channel. An exact analytical solution of the problem is obtained. Two cases of small and large rotation have been considered to assess the effects of different parameters involved in the flow problem. The velocity field, the amplitude and the phase angle of the shear stress are shown graphically and discussed in detail. During analysis it is found that the flow problem studied by Makinde and Mhone (2005) is incorrect physically and mathematically

2013 ◽  
Vol 18 (4) ◽  
pp. 1237-1248 ◽  
Author(s):  
K.D. Singh

Abstract In this paper an oscillatory flow of a viscoelastic, incompressible and electrically conducting fluid through a porous medium bounded by two infinite vertical parallel plates is discussed. One of these plates is subjected to a slip-flow condition and the other to a no-slip condition. The pressure gradient in the channel oscillates with time. A magnetic field of uniform strength is applied in the direction perpendicular to the plates. The induced magnetic field is neglected due to the assumption of a small magnetic Reynolds number. The temperature difference of the two plates is also assumed high enough to induce heat transfer due to radiation. A closed form analytical solution to the problem is obtained. The analytical results are evaluated numerically and then presented graphically to discuss in detail the effects of different parameters entering into the problem. A number of particular cases have been shown by dotted curves in the figures. During the analysis it is found that the physical and the mathematical formulations of the problems by Makinde and Mhone (2005), Mehmood and Ali (2007), Kumar et al. (2010) and Choudhury and Das (2012) are not correct. The correct solutions to all these important oscillatory flow problems are deduced.


2012 ◽  
Vol 2012 ◽  
pp. 1-26 ◽  
Author(s):  
Mohamed Abd El-Aziz ◽  
Tamer Nabil

The effect of thermal radiation on steady hydromagnetic heat transfer by mixed convection flow of a viscous incompressible and electrically conducting fluid past an exponentially stretching continuous sheet is examined. Wall temperature and stretching velocity are assumed to vary according to specific exponential forms. An external strong uniform magnetic field is applied perpendicular to the sheet and the Hall effect is taken into consideration. The resulting governing equations are transformed into a system of nonlinear ordinary differential equations using appropriate transformations and then solved analytically by the homotopy analysis method (HAM). The solution is found to be dependent on six governing parameters including the magnetic field parameterM, Hall parameterm, the buoyancy parameterξ, the radiation parameterR, the parameter of temperature distributiona, and Prandtl number Pr. A systematic study is carried out to illustrate the effects of these major parameters on the velocity and temperature distributions in the boundary layer, the skin-friction coefficients, and the local Nusselt number.


2014 ◽  
Vol 92 (11) ◽  
pp. 1387-1396 ◽  
Author(s):  
J.C. Umavathi ◽  
A.J. Chamkha

In this study, the effects of viscous and Ohmic dissipation in steady, laminar, mixed, convection heat transfer for an electrically conducting fluid flowing through a vertical channel is investigated in both aiding and opposing buoyancy situations. The plates exchange heat with an external fluid. Both conditions of equal and different reference temperatures of the external fluid are considered. First, the simpler cases of either negligible Brinkman number or negligible Grashof number are addressed with the help of analytical solutions. The combined effects of buoyancy forces and viscous dissipation are analyzed using a perturbation series method valid for small values of the perturbation parameter. To relax the conditions on the perturbation parameter, the governing equations are also evaluated numerically by a shooting technique that uses the classical explicit Runge–Kutta method of four slopes as an integration scheme and the Newton–Raphson method as a correction scheme. In the examined cases of velocity and temperature fields, the Nusselt numbers at both the walls and the average velocity are explored. It is found that the velocity profiles for an open circuit (E > 0 or E < 0) lie in between the short circuit (E = 0). The graphical results illustrating the effects of various parameters on the flow as well as the average velocity and Nusselt numbers are presented for open and short circuits. In the absence of electric field load parameter and Hartmann number, the results agree with Zanchini (Int. J. Heat Mass Transfer, 41, 3949 (1998)). Further, the analytical and numerical solutions agree very well for small values of the perturbation parameter.


2016 ◽  
Vol 21 (3) ◽  
pp. 667-681 ◽  
Author(s):  
K.D. Singh

Abstract An unsteady mixed convection flow of a visco-elastic, incompressible and electrically conducting fluid in a hot vertical channel is analyzed. The vertical channel is filled with a porous medium. The temperature of one of the channel plates is considered to be fluctuating span-wise cosinusoidally, i.e., $T^* \left( {y^* ,z^* ,t^* } \right) = T_1 + \left( {T_2} - {T_ 1} \right)\cos \left( {{{\pi z^* } \over d} - \omega ^* t^* } \right)$ . A magnetic field of uniform strength is applied perpendicular to the planes of the plates. The magnetic Reynolds number is assumed very small so that the induced magnetic field is neglected. It is also assumed that the conducting fluid is gray, absorbing/emitting radiation and non-scattering. Governing equations are solved exactly for the velocity and the temperature fields. The effects of various flow parameters on the velocity, temperature and the skin friction and the Nusselt number in terms of their amplitudes and phase angles are discussed with the help of figures.


2018 ◽  
Vol 73 (8) ◽  
pp. 741-751 ◽  
Author(s):  
Niazi M. Dilawar Khan ◽  
Hang Xu ◽  
Qingkai Zhao ◽  
Qiang Sun

AbstractWe consider the fully developed mixed convection flow in a vertical channel driven by an external pressure gradient and buoyancy force. Unlike in previous studies, we employ a new model to formulate the flow problem that guarantees the smoothness and continuity of the distributions of the electrical potential and velocity. This model, solved by the homotopy analysis method, is compatible with the channel flow models commonly used in fluid mechanics.


Sign in / Sign up

Export Citation Format

Share Document