scholarly journals Probabilistic Analysis for Estimation of the Initiation Time of Corrosion

2019 ◽  
Vol 15 (2) ◽  
pp. 1-13
Author(s):  
Wafa Nor El Houda Cherifi ◽  
Youcef Houmadi ◽  
Omar Benali

Abstract In this paper, a probabilistic study on durability concrete was carried out. In such a design, initiation time of corrosion must be expressed as a mathematical model using Fick’s second law and the statistical distributions properties of theirs parameters was included in this model. The scatter both in the environmental exposure conditions and structural properties was considered as random fields in the mathematical model with a probabilistic design. The main objective of this study is predicted initiation time of corrosion of concrete structures in chloride containing environments. This probabilistic study is developed using Monte Carlo simulation to determine the contribution of each input parameters and the statistical parameters of the random variables on the probability distribution functions of the initiation time of corrosion. Also, a comparison study was carried out to analyze the impact of the probability distribution on the response (the initiation time of corrosion).

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3390
Author(s):  
Željko Knezić ◽  
Željko Penava ◽  
Diana Šimić Penava ◽  
Dubravko Rogale

Electrically conductive yarns (ECYs) are gaining increasing applications in woven textile materials, especially in woven sensors suitable for incorporation into clothing. In this paper, the effect of the yarn count of ECYs woven into fabric on values of electrical resistance is analyzed. We also observe how the direction of action of elongation force, considering the position of the woven ECY, effects the change in the electrical resistance of the electrically conductive fabric. The measurements were performed on nine different samples of fabric in a plain weave, into which were woven ECYs with three different yarn counts and three different directions. Relationship curves between values of elongation forces and elongation to break, as well as relationship curves between values of electrical resistance of fabrics with ECYs and elongation, were experimentally obtained. An analytical mathematical model was also established, and analysis was conducted, which determined the models of function of connection between force and elongation, and between electrical resistance and elongation. The connection between the measurement results and the mathematical model was confirmed. The connection between the mathematical model and the experimental results enables the design of ECY properties in woven materials, especially textile force and elongation sensors.


1997 ◽  
Vol 78 (10) ◽  
pp. 1904-1907 ◽  
Author(s):  
Weinan E ◽  
Konstantin Khanin ◽  
Alexandre Mazel ◽  
Yakov Sinai

2015 ◽  
Vol 778 ◽  
pp. 259-263
Author(s):  
Fa Jun Zhang ◽  
Lin Zi Li ◽  
Hui Lin ◽  
Yin Lin Pu ◽  
Zhu Xin

Various uncertain factors affect the movement of the welding robot, thus welding gun tend to deviate from the theory of welding position which reduces the welding accuracy, of which the revolute pair clearance have an greater effect on the movement of the welding robot. In order to study the influence of revolute pair clearance to the end pose accuracy of welding robot, the mathematical model of revolute pair clearance was established, and the software SolidWorks was used for establishing the welding robot model, making simulations of the mechanical arm with joint clearance and no joint clearance. At last, the movement characteristic of the hinge shaft is attained. The simulation results showed that the shaft velocity and displacement of mechanical arm with joint clearance has a certain degree of fluctuation, which affecting the end pose accuracy of welding robot , and reducing the movement stability and the welding accuracy of welding robot.


2021 ◽  
Author(s):  
Hamed Farhadi ◽  
Manousos Valyrakis

<p>Applying an instrumented particle [1-3], the probability density functions of kinetic energy of a coarse particle (at different solid densities) mobilised over a range of above threshold flow conditions conditions corresponding to the intermittent transport regime, were explored. The experiments were conducted in the Water Engineering Lab at the University of Glasgow on a tilting recirculating flume with 800 (length) × 90 (width) cm dimension. Twelve different flow conditions corresponding to intermittent transport regime for the range of particle densities examined herein, have been implemented in this research. Ensuring fully developed flow conditions, the start of the test section was located at 3.2 meters upstream of the flume outlet. The bed surface of the flume is flat and made up of well-packed glass beads of 16.2 mm diameter, offering a uniform roughness over which the instrumented particle is transported. MEMS sensors are embedded within the instrumented particle with 3-axis gyroscope and 3-axis accelerometer. At the beginning of each experimental run, instrumented particle is placed at the upstream of the test section, fully exposed to the free stream flow. Its motion is recorded with top and side cameras to enable a deeper understanding of particle transport processes. Using results from sets of instrumented particle transport experiments with varying flow rates and particle densities, the probability distribution functions (PDFs) of the instrumented particles kinetic energy, were generated. The best-fitted PDFs were selected by applying the Kolmogorov-Smirnov test and the results were discussed considering the light of the recent literature of the particle velocity distributions.</p><p>[1] Valyrakis, M.; Alexakis, A. Development of a “smart-pebble” for tracking sediment transport. In Proceedings of the International Conference on Fluvial Hydraulics (River Flow 2016), St. Louis, MO, USA, 12–15 July 2016.</p><p>[2] Al-Obaidi, K., Xu, Y. & Valyrakis, M. 2020, The Design and Calibration of Instrumented Particles for Assessing Water Infrastructure Hazards, Journal of Sensors and Actuator Networks, vol. 9, no. 3, 36.</p><p>[3] Al-Obaidi, K. & Valyrakis, M. 2020, Asensory instrumented particle for environmental monitoring applications: development and calibration, IEEE sensors journal (accepted).</p>


Author(s):  
Hamdy Hassan

Abstract In this paper, a theoretical study is presented on enhancement of the solar still performance by using the exhaust gases passing inside a chimney under the still basin. The impact of the exhaust gases temperature on the solar still temperature, productivity, and efficiency are considered. The performance of solar still with chimney is compared with that of conventional solar still. The study is carried out under the hot and climate conditions of Upper Egypt. A complete transient mathematical model of the physical model including the solar still regions temperatures, productivity, and heat transfer between the solar still and the exhaust gases are constructed. The mathematical model is solved numerically by using fourth-order Runge-Kutta method and is programmed by using MATLAB. The mathematical model is validated using an experimental work. The results show that the solar still saline water temperature increases and productivity with using and rising the exhaust gases. Furthermore, the impact of using exhaust gases on the still performance in winter is greater than in summer. using chimney exhaust gases at 75 °C and 125 °C enhances the daily freshwater yield of the conventional still by more than three times and about six times in winter, respectively, and about two and half times and more than three times in summer, respectively.


Author(s):  
D. Xue ◽  
S. Y. Cheing ◽  
P. Gu

This research introduces a new systematic approach to identify the optimal design configuration and attributes to minimize the potential construction project changes. The second part of this paper focuses on the attribute design aspect. In this research, the potential changes of design attribute values are modeled by probability distribution functions. Attribute values of the design whose construction tasks are least sensitive to the changes of these attribute values are identified based upon Taguchi Method. In addition, estimation of the potential project change cost due to the potential design attribute value changes is also discussed. Case studies in pipeline engineering design and construction have been conducted to show the effectiveness of the introduced approach.


Sign in / Sign up

Export Citation Format

Share Document