conductive yarns
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 49)

H-INDEX

14
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 272
Author(s):  
Abdella Ahmmed Simegnaw ◽  
Benny Malengier ◽  
Melkie Getnet Tadesse ◽  
Gideon Rotich ◽  
Lieva Van Langenhove

Smart textiles have attracted huge attention due to their potential applications for ease of life. Recently, smart textiles have been produced by means of incorporation of electronic components onto/into conductive metallic yarns. The development, characterizations, and electro-mechanical testing of surface mounted electronic device (SMD) integrated E-yarns is still limited. There is a vulnerability to short circuits as non-filament conductive yarns have protruding fibers. It is important to determine the best construction method and study the factors that influence the textile properties of the base yarn. This paper investigated the effects of different external factors, namely, strain, solder pad size, temperature, abrasion, and washing on the electrical resistance of SMD integrated silver-coated Vectran (SCV) yarn. For this, a Vectran E-yarn was fabricated by integrating the SMD resistor into a SCV yarn by applying a vapor phase reflow soldering method. The results showed that the conductive gauge length, strain, overlap solder pad size, temperature, abrasion, and washing had a significant effect on the electrical resistance property of the SCV E-yarn. In addition, based on the experiment, the E-yarn made from SCV conductive thread and 68 Ω SMD resistor had the maximum electrical resistance and power of 72.16 Ω and 0.29 W per 0.31 m length. Therefore, the structure of this E-yarn is also expected to bring great benefits to manufacturing wearable conductive tracks and sensors.


2021 ◽  
Author(s):  
özgü özen ◽  
demet Yılmaz ◽  
Kerim Yapıcı

Abstract To take the advantages of spun yarns such as porosity, softness, bending as well as usability as yarn/fabric forms, in this study, it was worked on an alternative conductive yarn production method. Different from other methods such as coating, core-spun, blending, a conductive nanosuspension was applied to viscose, cotton and polyester open fibre bundles with different feeding amounts during the ring spinning with a specially developed apparatus. Reduced graphene oxide (rGO) was used to impart conductivity. Different from literature, rGO was synthesized with a single step process instead of two-step processes to ensure simple, easy-to-apply process and industrial applicability. Following to yarn production, winding, knitting and washing processes were realized to evaluate the changes in yarn conductivity and the usability of the yarns in the post-spinning processes. In addition to tensile properties of the yarns and air permeability of the fabrics, electrical resistance and environmental impact of the method was compared with immersion&drying process. The results indicated that alternative method allows the production of conductive (lower resistance than 100 kΩ) but also stronger, flexible, washable and breathable electronic textile products with an environmentally friendly process. There has been no effort, as yet, to get conductivity in this manner. Therefore, the developed method can be considered to be a new application in the functional yarn production field. The produced conductive yarns can be converted into fabric form by weaving, knitting and embroidery. Therefore, they can also be seen as an ideal as the platforms for future wearable electronics.


2021 ◽  
pp. 004051752110571
Author(s):  
Tin Wai Cheung ◽  
Tao Liu ◽  
Mei Yu Yao ◽  
Yifei Tao ◽  
He Lin ◽  
...  

Textiles are conventionally utilized as the raw materials for making clothing and complementary accessories. To keep abreast of the times, a new direction of integrating textiles into electronic technology has been given in order to develop a temperature-sensing device with outstanding built-in flexibility, versality and softness. In this study, a flexible construction of the textile-based thermocouple temperature sensor via an industrial-and-technological-based weaving process was designed. The feasible arrangement of the conductive textile materials in the warp and weft directions related to the temperature-sensing ability was studied in detail, and significant linearity was shown in the range of 5–50[Formula: see text] with different groups of combinations of the conductive yarns. More cross-intersections and ‘hot junctions’ resulted from the 3 × 3 warp–weft arrangement, offering higher stability and accuracy in thermal sensation. Besides, the resistance of the thermocouple remained almost constant under different degrees of bending. The relationship between the resistance and the bending flexibility was also investigated over a range of temperature.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xun Zhao ◽  
Yihao Zhou ◽  
Jing Xu ◽  
Guorui Chen ◽  
Yunsheng Fang ◽  
...  

AbstractMagnetoelastic effect characterizes the change of materials’ magnetic properties under mechanical deformation, which is conventionally observed in some rigid metals or metal alloys. Here we show magnetoelastic effect can also exist in 1D soft fibers with stronger magnetomechanical coupling than that in traditional rigid counterparts. This effect is explained by a wavy chain model based on the magnetic dipole-dipole interaction and demagnetizing factor. To facilitate practical applications, we further invented a textile magnetoelastic generator (MEG), weaving the 1D soft fibers with conductive yarns to couple the observed magnetoelastic effect with magnetic induction, which paves a new way for biomechanical-to-electrical energy conversion with short-circuit current density of 0.63 mA cm−2, internal impedance of 180 Ω, and intrinsic waterproofness. Textile MEG was demonstrated to convert the arterial pulse into electrical signals with a low detection limit of 0.05 kPa,  even with heavy perspiration or in underwater situations without encapsulations.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6780
Author(s):  
Md. Reazuddin Repon ◽  
Ginta Laureckiene ◽  
Daiva Mikucioniene

Textile-based heaters have opened new opportunities for next-generation smart heating devices. This experiment presents electrically conductive textiles for heat generation in orthopaedic compression supports. The main goal was to investigate the influence of frequent washing and stretching on heat generation durability of constructed compression knitted structures. The silver coated polyamide yarns were used to knit a half-Milano rib structure containing elastomeric inlay-yarn. Dimensional stability of the knitted fabric and morphological changes of the silver coated electro-conductive yarns were investigated during every wash cycle. The results revealed that temperature becomes stable within two minutes for all investigated fabrics. The heat generation was found to be dependent on the stretching, mostly due to the changing surface area; and it should be considered during the development of heated compression knits. Washing negatively influences the heat-generating capacity on the fabric due to the surface damage caused by the mechanical and chemical interaction during washing. The higher number of silver-coated filaments in the electro-conductive yarn and the knitted structure, protecting the electro-conductive yarn from mechanical abrasion, may ensure higher durability of heating characteristics.


2021 ◽  
pp. 152808372110494
Author(s):  
Yaya Zhang ◽  
Jiyong Hu ◽  
Xiong Yan ◽  
Huating Tu

To reveal the engineering relationship among the electrical properties of embroidered conductive lines, the electrical properties and arrangements of conductive yarns, it is necessary to establish their equivalent resistance model. Embroidered conductive lines in textiles are usually fabricated by single-layer (conductive and nonconductive yarn used as upper and lower yarn) or double-layer embroidery technology (conductive yarns used as upper and lower yarn). Several researchers have proposed the simple resistance model for single-layer embroidered conductive line based on geometric structure of single conductive yarn in fabric. However, the double-layer conductive line has the contact resistance periodically interlaced by the upper and lower conductive yarns, and it made its equivalent circuit different from that of single-layer conductive line. In this work, a geometric model was built to describe the trace of conductive yarn in fabric, and in combination with Wheatstone Bridge theory, was applied to establish the equivalent resistance models of double-layer conductive lines with a certain width, consisted of various courses. First, the equivalent resistance model of double-layer conductive lines consisting of single course was proposed to calculate the contact resistance. Then, to obtain the electrical resistance of double-layer conductive lines with a certain width, the equivalent resistance model was extended from single course to multiple courses ([Formula: see text]). Finally, to validate the proposed equivalent resistance model, double-layer conductive lines with different embroidery parameters (stitch length and stitch spacing) on nonwoven fabric were fabricated and evaluated. The experimental results revealed that the proposed model accurately predicted the resistances of double-layer conductive lines.


2021 ◽  
Vol 2021 ◽  
pp. 348-354
Author(s):  
I.R. Radulescu ◽  
L. Surdu ◽  
E. Visileanu ◽  
I. Sandulache ◽  
C. Morari ◽  
...  

Electromagnetic shielding based on textile fabrics is important in applications for ensuring proper work of electronic equipment and for protection of human’s health. Fibre-based materials include a good capability for a precise design of the physical and electric properties of the EM shields. There are two main methods to impart electroconductive properties to textile fabrics: insertion of conductive yarns into the fabric structure and coating with conductive layers. In our approach, both methods were applied: cotton woven fabrics with conductive yarns of stainless steel and silver, were coated by magnetron sputtering with stainless steel layers. Electromagnetic shielding effectiveness (EMSE) was determined by Transversal-Electric- Magnetic (TEM) cell measurement system, according to standard ASTM ES-07. Moreover, EMSE was determined for the superposition of the manufactured textile shields. The stainless-steel plasma coating improves EMSE with 20 dB in case of the fabrics with stainless steel yarns and with 15-17 dB in case of the fabrics with silver yarns, in the frequency range of 0.1-1000 MHz. By superposition of the plasma coated shields, the gain in EMSE achieved was of 6 dB for the fabrics with stainless steel yarns and of 5-8 dB for the fabrics with silver yarns, on the same frequency range. EMSE has significant higher values in case of the superposed shields with silver yarns and stainless-steel coating for the frequency domain of 100-1000 MHz, due to the higher thickness and the significant contribution of the multiple reflection term.


Textiles ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 419-432
Author(s):  
Sheng Yong ◽  
Meijing Liu ◽  
Abiodun Komolafe ◽  
John Tudor ◽  
Kai Yang

Conductive tracks are key constituents of wearable electronics and e-textiles, as they form the interconnective links between wearable electrical devices/systems. They are made by coating or printing conductive patterns or tracks on textiles or by weaving, knitting, or embroidering conductive yarns into textiles. Screen printing is a mature and cost-effective fabrication method that is used in the textile industry. It allows a high degree of geometric freedom for the design of conductive patterns or tracks. Current screen-printed conductive textiles have the limitations of low durability when washed or when placed under bending, and they typically require encapsulation layers to protect the printed conductor. This paper presents a printable paste formulation and fabrication process based on screen printing for achieving a flexible and durable conductive polyester–cotton textile using an inexpensive carbon as the conductor. The process does not require an interface, the smoothing of the textile, or an encapsulation layer to protect the conductor on the textile. A resistivity of 4 × 10−2 Ω·m was achieved. The textile remains conductive after 20 standard washes, resulting in the conductor’s resistance increasing by 140%. The conductive textile demonstrated less than ±10% resistance variation after bending for 2000 cycles.


2021 ◽  
Author(s):  
Ion Răzvan Rădulescu ◽  
Lilioara Surdu ◽  
Emilia Visileanu ◽  
Bogdana Mitu ◽  
Cristian Morari

Nowadays, fiber based flexible electromagnetic shields have widespread applications in ensuring Electromagnetic Compatibility (EMC). Shielding is a solution of EMC, and the main methods to estimate shielding effectiveness are represented by the circuit method and the impedance method. Magnetron sputtering of metallic layers represents a novel technique to impart electric conductive properties to fabrics. Coating of fabrics represents a second main option to manufacture textile shields beside the insertion of conductive yarns in the fabric structure. Life Cycle Assessment (LCA) is often used to assess a comparatively modern with a classical manufacturing process in order to prove its eco-friendly character. This chapter comparatively assesses flexible EM shields manufactured of fabrics with inserted conductive yarns with and without magnetron plasma coating. The copper plasma coating of cotton fabrics with inserted silver yarns increases shielding effectiveness (EMSE) by 8–10 dB. In order to keep for the LCA study the same functional unit of 50 dB at 100 MHz for one sqm of fabric, the fabric structure is modeled with a reduced distance between the inserted conductive yarns. Results of the LCA study show a substantial impact on the environment for the plasma coated fabric upon using a laboratory scale deposition set-up.


Sign in / Sign up

Export Citation Format

Share Document