Experimental Study of Flow Control Over a Standard Road Vehicle Using Plasma Actuator

2020 ◽  
Vol 22 (4) ◽  
pp. 1047-1060
Author(s):  
S. Shadmani ◽  
S. M. Mousavi Nainiyan ◽  
R. Ghasemiasl ◽  
M. Mirzaei ◽  
S. G. Pouryoussefi

AbstractAhmed Body is a standard and simplified shape of a road vehicle that's rear part has an important role in flow structure and it's drag force. In this paper flow control around the Ahmed body with the rear slant angle of 25° studied by using the plasma actuator system situated in middle of the rear slant surface. Experiments conducted in a wind tunnel in two free stream velocities of U = 10m/s and U = 20m/s using steady and unsteady excitations. Pressure distribution and total drag force were measured and smoke flow visualization carried out in this study. The results showed that at U = 10m/s using plasma actuator suppress the separated flow over the rear slant slightly and be effective on pressure distribution. Also, total drag force reduces in steady and unsteady excitations for 3.65% and 2.44%, respectively. At U = 20m/s, using plasma actuator had no serious effect on the pressure distribution and total drag force.

2020 ◽  
Vol 22 (1) ◽  
pp. 239-252
Author(s):  
S. Shadmani ◽  
S. M. Mousavi Nainiyan ◽  
R. Ghasemiasl ◽  
M. Mirzaei ◽  
S. G. Pouryoussefi

AbstractAhmed Body is a standard and simplified shape of a road vehicle that's rear part has an important role in flow structure and it's drag force. In this paper flow control around the Ahmed body with the rear slant angle of 25° studied by using the plasma actuator system situated in middle of the rear slant surface. Experiments conducted in a wind tunnel in two free stream velocities of U = 10 m/s and U = 20 m/s using steady and unsteady excitations. Pressure distribution and total drag force was measured and smoke flow visualization carried out in this study. The results showed that at U = 10 m/s using plasma actuator suppress the separated flow over the rear slant slightly and be effective on pressure distribution. Also total drag force reduces in steady and unsteady excitations for 3.65% and 2.44%, respectively. At U = 20 m/s, using plasma actuator had no serious effect on the pressure distribution and total drag force.


2019 ◽  
Vol 29 ◽  
pp. 153-158 ◽  
Author(s):  
Ashish Kumar ◽  
Srijna Singh ◽  
Neelanchali Asija Bhalla

Author(s):  
S. Aubrun ◽  
F. Alvi ◽  
A. Leroy ◽  
A. Kourta

A model of a generic vehicle shape, the Ahmed body with a slant angle of 25°, is equipped with an array of blowing steady microjets 6mm downstream of the separation line between the roof and the slanted rear window. The goal of the present study is to evaluate the effectiveness of this actuation method in reducing the aerodynamic drag, by reducing or suppressing the 3D closed separation bubble located on the slanted surface. The efficiency of this control approach is quantified with the help of aerodynamic load measurements. The changes in the flow field when control is applied are examined using PIV measurements and skin friction visualizations. By activating the steady microjet array, the drag coefficient was reduced by 9 to 11%, depending on the Reynolds number. The modification of the flow topology under progressive flow control is particularly studied.


2018 ◽  
Vol 28 (5) ◽  
pp. 1061-1079 ◽  
Author(s):  
Stephie Edwige ◽  
Yoann Eulalie ◽  
Philippe Gilotte ◽  
Iraj Mortazavi

Purpose The purpose of this paper is to present numerical investigations of the flow dynamic characteristics of a 47° Ahmed Body to identify wake flow control strategy leading to drag coefficient reduction, which could be tested later on sport utility vehicles. Design/methodology/approach This study begins with a mean flow topology description owing to dynamic and spectral analysis of the aerodynamic tensor. Then, the sparse promoting dynamic modal decomposition method is discussed and compared to other modal approaches. This method is then applied on the wall and wake pressure to determine frequencies of the highest energy pressure modes and their transfers to other frequency modes. This analysis is then used to design appropriated feedback flow control strategies. Findings This dynamic modal decomposition highlights a reduced number of modes at low frequency which drive the flow dynamics. The authors especially notice that the pressure mode at a Strouhal number of 0.22, based on the width between feet, induces aerodynamic losses close to the rear end. Strategy of the proposed control loop enables to dampen the energy of this mode, but it has been transferred to lower frequency mode outside of the selected region of interest. Originality/value This analysis and methodology of feedback control shows potential drag reduction with appropriated modal energy transfer management.


Author(s):  
Hung Tran The ◽  
Masayuki Anyoji ◽  
Takuji Nakashima ◽  
Keigo Shimizu ◽  
Anh Dinh Le

Abstract In this study, skin friction around a ½-scale Ahmed body was measured experimentally at a Reynolds number of Re = 2×105. The slant angle of the Ahmed body was 25° and the yaw angles ranged from 0° to 8°. This study focused on the flow structure on the slant surface under different cross-wind conditions. A force balance system was applied to measure the aerodynamic drag of the model. The global skin-friction topology was measured by applying a luminescent oil layer with a sub-grid data processing algorithm. The method used to measure the skin friction was conducted for the first time on the Ahmed body. The results indicated that the technique is highly capable of extracting the skin-friction topology. For a yaw angle below 3°, the flow on the slant surface was not significantly affected by the cross-wind condition and the drag of the model was nearly constant. However, at yaw angles above 3°, the flow on the slant surface was highly affected by the roof longitudinal vortexes on the windward side, leading to a dramatic increase in the drag of the model. High consistency in the drag and skin-friction fields was observed. The detailed skin-friction structure at different yaw angles will be discussed in this study.


2018 ◽  
Vol 11 (5) ◽  
pp. 1267-1276 ◽  
Author(s):  
S. Shadmani ◽  
S. M. Mousavi Nainiyan ◽  
M. Mirzaei ◽  
R. Ghasemiasl ◽  
S. G. Pouryoussefi ◽  
...  

2013 ◽  
Vol 2013 (0) ◽  
pp. _G0406-01_-_G0406-03_
Author(s):  
Satoshi SEKIMOTO ◽  
Sulaiman Taufik ◽  
Masayuki ANYOJI ◽  
Taku NONOMURA ◽  
Kozo FUJII

Sign in / Sign up

Export Citation Format

Share Document