scholarly journals Identification of in vitro and in vivo potential metabolites of novel cardiovascular and adrenolytic drugs by liquid chromatography-mass spectrometry with the aid of experimental design

2019 ◽  
Vol 18 (2) ◽  
pp. 179-194
Author(s):  
Malgorzata Szultka-Mlynska ◽  
Katarzyna Pauter ◽  
Boguslaw Buszewski

Abstract Drug metabolism in liver microsomes was studied in vitro using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Relevant drug was incubated with dog, human and rat liver microsomes (DLMs, HLMs, RLMs) along with NADPH, and the reaction mixture was analyzed by LC-MS/MS to obtain specific metabolic profile. GRACE analytical C18 column, Vision HT (50 × 2 mm, 1.5 μm) was implemented with acetonitrile and water (+ 5 mM ammonium acetate) in a gradient mode as the mobile phase at a flow 0.4 mL.min−1. Different phase I and phase II metabolites were detected and structurally described. The metabolism of the studied drugs occurred via oxidation, hydroxylation and oxidative deamination processes. Conjugates with the glucuronic acid and sulfate were also observed as phase II biotransformation. The central composite design (CCD) showed that factors, such as time incubation, liver microsomal enzymes concentration and NADPH concentration, along with drying gas temperature, nebulizer gas pressure and capillary voltage significantly affected the final response of the method. This study describes the novel information about the chemical structure of the potential metabolites of selected biologically active compounds, which provide vital data for further pharmacokinetic and in vivo metabolism studies.

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Beibei Zhang ◽  
Xiaoli Chen ◽  
Rui Zhang ◽  
Fangfang Zheng ◽  
Shuzhang Du ◽  
...  

Icaritin is a naturally bioactive flavonoid with several significant effects. This study aimed to clarify the metabolite profiling, pharmacokinetics, and glucuronidation of icaritin in rats. An ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) assay was developed and validated for qualitative and quantitative analysis of icaritin. Glucuronidation rates were determined by incubating icaritin with uridine diphosphate glucuronic acid- (UDPGA-) supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. A total of 30 metabolites were identified or tentatively characterized in rat biosamples based on retention times and characteristic fragmentations, following proposed metabolic pathway which was summarized. Additionally, the pharmacokinetics parameters were investigated after oral administration of icaritin. Moreover, icaritin glucuronidation in rat liver microsomes was efficient with CLint (the intrinsic clearance) values of 1.12 and 1.56 mL/min/mg for icaritin-3-O-glucuronide and icaritin-7-O-glucuronide, respectively. Similarly, the CLint values of icaritin-3-O-glucuronide and icaritin-7-O-glucuronide in rat intestine microsomes (RIM) were 1.45 and 0.86 mL/min/mg, respectively. Taken altogether, dehydrogenation at isopentenyl group and glycosylation and glucuronidation at the aglycone were main biotransformation process in vivo. The general tendency was that icaritin was transformed to glucuronide conjugates to be excreted from rat organism. In conclusion, these results would improve our understanding of metabolic fate of icaritin in vivo.


Diagnostics ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 462 ◽  
Author(s):  
Elisa Danese ◽  
Davide Negrini ◽  
Mairi Pucci ◽  
Simone De Nitto ◽  
Davide Ambrogi ◽  
...  

Bile acids (BA) play a pivotal role in cholesterol metabolism. Their blood concentration has also been proposed as new prognostic and diagnostic indicator of hepatobiliary, intestinal, and cardiovascular disease. Liquid chromatography tandem mass spectrometry (LC–MS/MS) currently represents the gold standard for analysis of BA profile in biological samples. We report here development and validation of a LC–MS/MS technique for simultaneously quantifying 15 BA species in serum samples. We also established a reference range for adult healthy subjects (n = 130) and performed a preliminary evaluation of in vitro and in vivo interference. The method displayed good linearity, with high regression coefficients (>0.99) over a range of 5 ng/mL (lower limit of quantification, LLOQ) and 5000 ng/mL for all analytes tested. The accuracies were between 85–115%. Both intra- and inter-assay imprecision was <10%. The recoveries ranged between 92–110%. Each of the tested BA species (assessed on three concentrations) were stable for 15 days at room temperature, 4 °C, and −20 °C. The in vitro study did not reveal any interference from triglycerides, bilirubin, or cell-free hemoglobin. The in vivo interference study showed that pools obtained from hyper-cholesterolemic patients and hyper-bilirubinemic patients due to post-hepatic jaundice for benign cholestasis, cholangiocarcinoma and pancreatic head tumors had clearly distinct patterns of BA concentrations compared with a pool obtained from samples of healthy subjects. In conclusion, this study proposes a new suitable candidate method for identification and quantitation of BA in biological samples and provides new insight into a number of variables that should be taken into account when investigating pathophysiological changes of BA in human diseases.


RSC Advances ◽  
2019 ◽  
Vol 9 (18) ◽  
pp. 10211-10225 ◽  
Author(s):  
Mohamed W. Attwa ◽  
Adnan A. Kadi ◽  
Haitham AlRabiah ◽  
Hany W. Darwish

LC-MS/MS was used to screen for in vitro metabolites of NQT formed during incubation with human liver microsomes (HLMs) and then evaluated the generation of reactive electrophiles using capturing agents.


Sign in / Sign up

Export Citation Format

Share Document