scholarly journals Metabolite Profiling, Pharmacokinetics, and In Vitro Glucuronidation of Icaritin in Rats by Ultra-Performance Liquid Chromatography Coupled with Mass Spectrometry

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Beibei Zhang ◽  
Xiaoli Chen ◽  
Rui Zhang ◽  
Fangfang Zheng ◽  
Shuzhang Du ◽  
...  

Icaritin is a naturally bioactive flavonoid with several significant effects. This study aimed to clarify the metabolite profiling, pharmacokinetics, and glucuronidation of icaritin in rats. An ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) assay was developed and validated for qualitative and quantitative analysis of icaritin. Glucuronidation rates were determined by incubating icaritin with uridine diphosphate glucuronic acid- (UDPGA-) supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. A total of 30 metabolites were identified or tentatively characterized in rat biosamples based on retention times and characteristic fragmentations, following proposed metabolic pathway which was summarized. Additionally, the pharmacokinetics parameters were investigated after oral administration of icaritin. Moreover, icaritin glucuronidation in rat liver microsomes was efficient with CLint (the intrinsic clearance) values of 1.12 and 1.56 mL/min/mg for icaritin-3-O-glucuronide and icaritin-7-O-glucuronide, respectively. Similarly, the CLint values of icaritin-3-O-glucuronide and icaritin-7-O-glucuronide in rat intestine microsomes (RIM) were 1.45 and 0.86 mL/min/mg, respectively. Taken altogether, dehydrogenation at isopentenyl group and glycosylation and glucuronidation at the aglycone were main biotransformation process in vivo. The general tendency was that icaritin was transformed to glucuronide conjugates to be excreted from rat organism. In conclusion, these results would improve our understanding of metabolic fate of icaritin in vivo.

2019 ◽  
Vol 18 (2) ◽  
pp. 179-194
Author(s):  
Malgorzata Szultka-Mlynska ◽  
Katarzyna Pauter ◽  
Boguslaw Buszewski

Abstract Drug metabolism in liver microsomes was studied in vitro using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Relevant drug was incubated with dog, human and rat liver microsomes (DLMs, HLMs, RLMs) along with NADPH, and the reaction mixture was analyzed by LC-MS/MS to obtain specific metabolic profile. GRACE analytical C18 column, Vision HT (50 × 2 mm, 1.5 μm) was implemented with acetonitrile and water (+ 5 mM ammonium acetate) in a gradient mode as the mobile phase at a flow 0.4 mL.min−1. Different phase I and phase II metabolites were detected and structurally described. The metabolism of the studied drugs occurred via oxidation, hydroxylation and oxidative deamination processes. Conjugates with the glucuronic acid and sulfate were also observed as phase II biotransformation. The central composite design (CCD) showed that factors, such as time incubation, liver microsomal enzymes concentration and NADPH concentration, along with drying gas temperature, nebulizer gas pressure and capillary voltage significantly affected the final response of the method. This study describes the novel information about the chemical structure of the potential metabolites of selected biologically active compounds, which provide vital data for further pharmacokinetic and in vivo metabolism studies.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2113 ◽  
Author(s):  
Chao Hong ◽  
Ping Yang ◽  
Shuping Li ◽  
Yizhen Guo ◽  
Dan Wang ◽  
...  

Background: Ginsenoside Rg5 has been proved to have a wide range of pharmacological activities. However, the in vitro and in vivo metabolism pathways of ginsenosides are still unclear, which impedes the understanding of their in vivo fate. In this paper, the possible metabolic process of Rg5 was studied and the metabolites are identified. Methods: Samples from rat liver microsomes (RLMs) in vitro and from rat urine, plasma and feces in vivo were collected for analysis after oral administration of Rg5. A rapid analysis technique using ultra-performance liquid chromatography (UPLC)/quadrupole-time-of-flight mass spectrometry (QTOF-MS) was applied for detecting metabolites of Rg5 both in vitro and in vivo. Results: A feasible metabolic pathway was proposed and described for ginsenoside Rg5. A total of 17 metabolic products were detected in biological samples, including the RLMs (four), rat urine (two), feces (13) and plasma (four). Fifteen of them have never been reported before. Oxidation, deglycosylation, deoxidation, glucuronidation, demethylation and dehydration were found to be the major metabolic reactions of Rg5. Conclusions: The present study utilized a reliable and quick analytical tool to explore the metabolism of Rg5 in rats and provided significant insights into the understanding of the metabolic pathways of Rg5 in vitro and in vivo. The results could be used to not only evaluate the efficacy and safety of Rg5, but also identify potential active drug candidates from the metabolites.


Sign in / Sign up

Export Citation Format

Share Document