scholarly journals Diurnal feeding strategies of the Ferruginous Duck (Aythya nyroca) in Lake Tonga (Northeastern Algeria)

2019 ◽  
Vol 27 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Khalil Draidi ◽  
Badis Bakhouche ◽  
Naouel Lahlah ◽  
Imed Djemadi ◽  
Mourad Bensouilah

Abstract Although the Ferruginous Duck (Aythya nyroca) has thoroughly been studied, the foraging behaviour of this species is still not completely known. In the present paper we studied the diurnal feeding behaviour of ducks. We monitored the annual cycle of birds through two fieldtrips per month. The instantaneous behaviour of birds was recorded in regular 30-minute intervals from 7 a.m. to 4:30 p.m., amounting a total of 456 observation hours. Food searching activity corresponds to a quarter of the total diurnal time budget of the Ferruginous Duck. Foraging behaviour was classified into five categories dominated by the “diving”, which is almost 45.61% of the total search time. Foraging activities at the water surface considered to be secondary activities, including feeding by “bill”, “neck and head”, and “beak and head” in a rate of 19.86%, 14.53%, and 13.98%, respectively. The “toggle” remains a minor activity and represents only 5.99% of foraging time. The feeding behaviour of this species correlated to several environmental parameters (rainfall, temperature and wind velocity), and linked to the group size of ducks visiting the lake. Regarding the food intensity, our results show the highest values for “bill and head” behaviour. “Diving” has the longest feeding interval (16.16±14.1 minutes), while foraging by “bill” has the shortest (0.69 ± 0.48 minutes).

1980 ◽  
Vol 58 (7) ◽  
pp. 1277-1282 ◽  
Author(s):  
Richard A. Wishart ◽  
Spencer G. Sealy

Marbled godwit (Limosa fedoa) foraging, social behaviour, and habitat use were studied in late summer in southern Manitoba. The flocks spent most of their time using three small potholes on the study area. Time budget activity changed cyclically over the day; birds spent 61.3% of the day feeding. Over 22% of foraging time was spent handling food and in pauses. It is suggested that the birds feed primarily by contact rather than sight and foraging may occur at night. Feeding was less efficient during strong wind and wave action and birds avoided exposed areas. This permitted them to feed at efficiencies characteristic of those of calm conditions. Birds were wary of marsh hawks (Circus cyaneus), but flocking and the use of open areas may have reduced their vulnerability to predation. Several factors including food availability, protection from wind, and vulnerability to predators probably influenced the way godwits used the habitat.


Author(s):  
Alexander Weigand ◽  
Agnès Bouchez ◽  
Pieter Boets ◽  
Kat Bruce ◽  
Fedor Ciampor ◽  
...  

Modern high-throughput sequencing technologies are becoming a game changer in many fields of aquatic research and biomonitoring. To unfold their full potential, however, the independent development of approaches has to be streamlined. This discussion must be fuelled by stakeholders and practitioners and, scientific results collaboratively filtered to identify the most promising avenues. Furthermore, aspects such as time, budget, skills and the application context have to be considered, finally communicating good practice strategies to target audiences. Since 2016, the EU COST Action DNAqua-Net is taming the wild west of molecular tools application in aquatic research and biomonitoring. After nucleating available knowledge by the formation of a highly international and transdisciplinary network of scientists, stakeholders, practitioners and enterprises, fields of high methodological diversity were identified. Relevant aspects are currently ground truthed, thereby reducing the plethora of pipelines, parameters and protocols to a subset of good practices or standardisations. To effectively bridge the science-application interface, the very same network is exploited for the dissemination of results (Leese et al. 2018). The internal working group structure of DNAqua-Net is used to provide an overview of existing methodological fields of diversity in DNA-based aquatic biomonitoring: WG1 -DNA Barcode References: Different marker systems are targeted for the same organism group. Even in case the same molecular marker is investigated, different primer pairs are frequently applied for DNA metabarcoding. Both aspects challenge the further development of high-quality and complete DNA barcode reference libraries (Weigand et al. 2019). WG2 -Biotic Indices & Metrics: Index systems are developed from molecular data in various ways: from the estimation of species' biomass (as a proxy for abundance) from sequence reads, to the correlation of presence/absence data of molecular operational taxonomic units (MOTUs) with environmental parameters (Pawlowski et al. 2018). WG3 -Field & Lab Protocols: Using environmental DNA (eDNA) metabarcoding as an example, diverse sampling techniques based on varying water volumes, different filter systems and collection devices as well as a multitude of laboratory protocols for PCR, replication and sequencing are considered. WG4 -Data Analysis & Storage: During the process of MOTU identification, varying threshold values and conceptually different pipelines are used, potentially impacting the final list of MOTUs or species retrieved. Furthermore, routine storage concepts for big biodiversity data are only in development and some sample types (e.g. eDNA) have no sophisticated metadata descriptions. WG5 -Implementation Strategy & Legal Issues: The working group picks up collaboratively filtered good practice strategies and generates room for discussions at the science-policy interface (Hering et al. 2018). The CEN working group WG28 "DNA methods" has been initiated and the development of standardisations is fostered.


2004 ◽  
Vol 26 (2) ◽  
pp. 169 ◽  
Author(s):  
TJ Dawson ◽  
KJ McTavish ◽  
BA Ellis

Eastern grey kangaroos (Macropus giganteus) have expanded into arid areas usually the habitat of red kangaroos (Macropus rufus). Extra watering sites for domestic stock is the suggested reason. However, changes in vegetation also have occurred due to grazing from domestic stock. We investigated the foraging strategies of M. giganteus and M. rufus in arid rangeland to see if these are involved in the range changes. Foraging patterns were similar, with both species mostly foraging at night; total feeding times were the same. M. giganteus and M. rufus had differing diets, though there was considerable overlap of 81 - 87%. Both species were highly selective, having similar narrow dietary niche breaths. Differences in plant preferences occurred and though both species had a preference for grass that of M. giganteus was higher. A larger foregut in M. giganteus reinforces its focus on grass. M. rufus also selected dicot forbs and malvaceous sub-shrubs. Both kangaroos showed avoidance of abundant chenopod shrubs (saltbushes and bluebushes) and trees. It is likely that the changes to arid-zone vegetation, with a shift to grass and annual dicot forbs, has been important for the expansion of M. giganteus, possibly combined with the greater availability of water.


1996 ◽  
Vol 1996 ◽  
pp. 78-78
Author(s):  
N.B. Prescott ◽  
T.T.F. Mottram ◽  
A.J.F. Webster

An automatic milking system (AMS) has the potential to milk cows when the cow chooses. However cows must attend the system at an appropriate frequency. The provision of food in the AMS is a robust, way of luring cows into the system. The system can be arranged such that the cows have to visit the AMS to access food in the exit area the other side. Here they can be fed forage or concentrate. It has been shown that feeding cows forage as a lure can result in modified forage feeding behaviour, and this may be to the detriment of the cows (Winter, 1993, Ketelaar-de-Lauwere, 1992). Feeding concentrate in the exit area may be an alternative design if the level of attendance generated is high enough. Cows can also be fed concentrate in the milking stall of the AMS. The aim of this experiment was to compare die effects of feeding forage or concentrate in the exit area and the effect of feeding or not feeding concentrate in the milking stall on attendances, and lying and feeding behaviour.


2005 ◽  
Vol 53 (3) ◽  
pp. 177 ◽  
Author(s):  
Tamra F. Chapman ◽  
David C. Paton

The endangered Kangaroo Island glossy black-cockatoo (Calyptorhynchus lathami halmaturinus) relies entirely on the seeds of the drooping sheoak (Allocasuarina verticillata) for food. The time budget of the glossy black-cockatoos and their foraging behaviour was recorded to provide an indication of whether their food supply was likely to be limiting. The foraging behaviour of non-breeding and breeding cockatoos was also compared to record the strategy they used to collect the additional energy needed to raise young. Glossy black-cockatoos spent a relatively small proportion of their time foraging, suggesting that the food supply was abundant in the habitats used for feeding. Non-breeding birds spent only 26% of their time feeding and breeding birds spent only 36% of their time feeding. The cockatoos spent 0.4% of their time flying, foraged in a mean of only five trees per day and harvested cones in no more than five bouts per tree. This shows that the cockatoos made few movements between drooping sheoaks and within the canopy of the sheoaks when foraging. When breeding, the cockatoos spent significantly more time per day foraging, cropped cones in significantly more bouts per tree and harvested significantly more cones per tree than non-breeding birds. This shows that breeding birds increased their energy intake without greatly increasing movement between trees. The small number of movements made by glossy black-cockatoos when foraging on Kangaroo Island reflects the abundance of food trees and may be a strategy to reduce the risk of predation.


2017 ◽  
Vol 14 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Clemens Vinzenz Ullmann ◽  
Philip A. E. Pogge von Strandmann

Abstract. Isotopic ratios and concentrations of the alkaline earth metals Mg and Sr in biogenic calcite are of great importance as proxies for environmental parameters. In particular, the Mg / Ca ratio as a temperature proxy has had considerable success. It is often hard to determine, however, which parameter ultimately controls the concentration of these elements in calcite. Here, multiple Mg / Ca and Sr / Ca transects through a belemnite rostrum of Passaloteuthis bisulcata (Blainville, 1827) are used to isolate the effect of calcite secretion rate on incorporation of Mg and Sr into the calcite. With increasing calcite secretion rate Mg / Ca ratios decrease and Sr / Ca ratios in the rostrum increase. In the studied specimen this effect is found to be linear for both element ratios over a calcite secretion rate increase of ca. 150 %. Mg / Ca ratios and Sr / Ca ratios show a linear co-variation with increasing relative growth rate, where a 100 % increase in growth rate leads to a (8.1 ± 0.9) % depletion in Mg and a (5.9 ± 0.7) % enrichment in Sr. The magnitude of the calcite secretion rate effect on Mg is (37 ± 4) % greater than that on Sr. These findings are qualitatively confirmed by a geochemical transect through a second rostrum of Passaloteuthis sp. Growth rate effects are well defined in rostra of Passaloteuthis, but only account for a minor part of chemical heterogeneity. Biasing effects on palaeoenvironmental studies can be minimized by informed sampling, whereby the apex and apical line of the rostrum are avoided.


2020 ◽  
Vol 16 (2) ◽  
pp. 20190743 ◽  
Author(s):  
Pauline Billard ◽  
Alexandra K. Schnell ◽  
Nicola S. Clayton ◽  
Christelle Jozet-Alves

Some animals optimize their foraging activity by learning and memorizing food availability, in terms of quantity and quality, and adapt their feeding behaviour accordingly. Here, we investigated whether cuttlefish flexibly adapt their foraging behaviour according to the availability of their preferred prey. In Experiment 1, cuttlefish switched from a selective to an opportunistic foraging strategy (or vice versa ) when the availability of their preferred prey at night was predictable versus unpredictable. In Experiment 2, cuttlefish exhibited day-to-day foraging flexibility, in response to experiencing changes in the proximate future (i.e. preferred prey available on alternate nights). In Experiment 1, the number of crabs eaten during the day decreased when shrimp (i.e. preferred food) were predictably available at night, while the consumption of crabs during the day was maintained when shrimp availability was unpredictable. Cuttlefish quickly shifted from one strategy to the other, when experimental conditions were reversed. In Experiment 2, cuttlefish only reduced their consumption of crabs during the daytime when shrimps were predictably available the following night. Their daytime foraging behaviour appeared dependent on shrimps' future availability. Overall, cuttlefish can adopt dynamic and flexible foraging behaviours including selective, opportunistic and future-dependent strategies, in response to changing foraging conditions.


2007 ◽  
Vol 42 (4) ◽  
pp. 481-495 ◽  
Author(s):  
Juang-Horng Chong ◽  
Ronald D. Oetting

Anagyrus sp. nov. nr. sinope Noyes and Menezes (Hymenoptera: Encyrtidae) is a candidate biological control agent against the Madeira mealybug, Phenacoccus madeirensis Green (Hemiptera: Pseudococcidae). This study reported on the components of the oviposition behavior of Anagyrus sp. nov. nr. sinope in relation to 6 developmental stadia of P. madeirensis: crawlers, second-instar nymphs, third-instar immature females, third-instar immature males, prereproductive adult females, and ovipositing adult females. A behavioral sequence and a time budget were prepared for Anagyrus sp. nov. nr. sinope, indicating that the parasitoids foraging in a patch containing third-instar and prereproductive adult females had the highest probability to encounter and eventually parasitize a host. The parasitoids attacking third-instar and prereproductive adult females also spent the largest proportion of total foraging time in oviposition (67 and 69%, respectively) and had the longest handling time (997 and 655 sec per event, respectively). No third-instar immature males, which were wrapped in thick tests constructed of wax filaments, were parasitized by the parasitoids. Anagyrus sp. nov. nr. sinope did not avoid superparasitism. Parasitoids foraging in patches of third-instar and adult females had a higher self-superparasitism rate (27–33%) than crawlers and second-instar nymphs (8–14%). The clutch sizes in the superparasitized mealybugs were slightly larger than those in the mealybugs parasitized only once, but the difference was only significant in the ovipositing female P. madeirensis. Older and larger mealybugs exhibited more vigorous defensive behaviors by walking away and flipping abdomens. However, such behavioral defenses were not effective against the persistent parasitoids.


2014 ◽  
Vol 10 (1) ◽  
Author(s):  
Peter Kaňuch ◽  
Anna Sliacka ◽  
Anton Krištín

AbstractSome insect herbivores can regulate their nourishment intake by different feeding behaviour. This mechanism allows them to persist with utilising different food resources according to the composition of the vegetation within their habitats. Using a two-choice experiment, we analysed foraging behaviour in females of the tree-dwelling bush-cricket Barbitistes constrictus (Orthoptera), which originated from two different forest habitats, spruce and beech forest. We found that individuals from the spruce forest mainly foraged on needle tips, and thus they nibbled more needles per day than individuals from the beech forest (medians 106.0 vs. 42.5; p < 0.0001). However, when the contents of droppings were dissected, the volume of consumed spruce was similar in both groups of bush-crickets (median > 90%), which is explained by the different feeding techniques of bush-crickets from different habitats. We propose possible scenarios for bush-cricket feeding adaptations to the deleterious effects of the host plant chemical compounds serving as a plant defence against herbivores.


1995 ◽  
Vol 347 (1322) ◽  
pp. 359-381 ◽  

It has previously been shown that platypus are sensitive to small electrical fields. It was predicted that platypus use their electrosensitivity to locate the source of foodstuffs on the bottom of the freshwater river systems in which they live, because the platypus are nocturnal, and close their eyes, ears and nostrils while underwater. In this paper we demonstrate for the first time that platypus are indeed sensitive to electrical waveforms that imitate the electromyogenic potential’s of fleeing prey, and following stimulation show interest in area surrounding the electrodes. We also show that platypus respond with a reflex after stimulation with a square wave, and show that this reflex is directionally tuned to the origin of the electrical pulse, with a preferential sensitivity axis 40 times more sensitive than non-preferred axes. The strong directional sensitivity explains previous discrepancies in the lowest threshold for platypus electroreception, which we find to be 50 μV cm -1 . Platypus are also sensitive to galvanic fields. We present the data in the light of standardized feeding strategies of the platypus, and discuss the integration of the findings into these feeding strategies. We surrounded our platypus enclosure with a Faraday cage, thereby eliminating excess electrical noise, a suggested new addition to the husbandry regime of platypus.


Sign in / Sign up

Export Citation Format

Share Document