scholarly journals Deposition of a polymeric porous superhydrophobic thin layer on the surface of poly(vinylidenefluoride) hollow fiber membrane

2013 ◽  
Vol 15 (3) ◽  
pp. 1-6 ◽  
Author(s):  
A.L. Ahmad ◽  
H.N. Mohammed ◽  
B.S. Ooi ◽  
C.P. Leo

Abstract Porous superhydrophobic layer of low-density polyethylene (LDPE) was created by a simple approach on the Poly(vinylidenefluoride) (PVDF) hollow fiber membranes. Acetone and ethanol mixtures with different volume ratios were used as the non-solvent on the coating surface. A 5:1 (v/v) acetone/ethanol ratio provided a porous surface with a 152° ± 3.2 water contact angle. The high contact angle could reduce membrane wettability for better carbon dioxide capture when the membrane was used as gas-liquid contactor in absorption processes. To assess the effect of the created superhydrophobic layer, the pristine and modified membranes were tested in a CO2 absorption system for ten days. The results revealed that the absorption flux in the modified membrane was higher than that of pristine membrane.

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Abdul Latif Ahmad ◽  
Amir Ikmal Hassan ◽  
Leo Choe Peng

The implementation of hydrophobicity on membranes is becoming crucial in current membrane technological development, especially in membrane gas absorption (MGA). In order to prevent membrane wetting, a polypropylene (PP) dense layer coating was deposited on a commercial poly(vinylidene fluoride) (PVDF) hollow fiber membrane as a method of enhancing surface hydrophobicity. The weight concentration of PP pellets was varied from 10 mg mL−1 to 40 mg mL−1 and dissolved in xylene. A two-step dip coating was implemented where the PVDF membrane was immersed in a non-solvent followed by a polymer coating solution. The effects of the modified membrane with the non-solvent methyl ethyl ketone (MEK) and without the non–solvent was investigated over all weight concentrations of the coating solution. The SEM investigation found that the modified membrane surface transfiguration formed microspherulites that intensified as PP concentration increased with and without MEK. To understand the coating formation further, the solvent–non-solvent compatibility with the polymer was also discussed in this study. The membrane characterizations on the porosity, the contact angle, and the FTIR spectra were also conducted in determining the polymer coating properties. Hydrophobic membrane was achieved up to 119.85° contact angle and peak porosity of 87.62% using MEK as the non-solvent 40 mg mL−1 PP concentration. The objective of the current manuscript was to test the hydrophobicity and wetting degree of the coating layer. Hence, physical absorption via the membrane contactor using CO2 as the feed gas was carried out. The maximum CO2 flux of 3.33 × 10−4 mol m−2 s−1 was achieved by 25 mg modified membrane at a fixed absorbent flow rate of 100 mL min−1 while 40 mg modified membrane showed better overall flux stability.


2011 ◽  
Vol 332-334 ◽  
pp. 1764-1768 ◽  
Author(s):  
Wei Shu ◽  
Chang Fa Xiao ◽  
Xiao Yu Hu ◽  
Shuo Mei

Poly (vinyl chloride) /poly (acrylonitrile) (PVC/PAN) hollow fiber membrane was prepared by phase inversion method and it was hydrolyzed in different NaOH solution concentration. After hydrolysis modified, the change of surface characteristic of the PVC/PAN hollow fiber membrane was described by Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) and water contact angle. Morphological structures of membranes were observed by field-emission scanning electron microscope (FESEM). Protein filtration was employed to evaluate the antifouling performance of the membrane. All these results demonstrated that PVC/PAN hollow fiber membrane modified by hydrolysis showed high permeation flux, good hydrophilicity and antifouling.


2021 ◽  
Vol 8 (2) ◽  
pp. 11-20
Author(s):  
Abdullah Adnan Abdulkarim ◽  
Yosra Mohammed Mahdi ◽  
Haider Jasim Mohammed

Polyethersulfone/zinc oxide mixed matrix hollow fiber membrane was fabricated using dry/wet phase inversion method. Zinc oxide nanoparticles (2 wt.%) were dispersed in N,N-dimethylacetamide (DMAc) solvent in the present of polyvinylepyrrolidene. The dope solution speed and take up speed was similar with performing the spinning process at room temperature. The produced membranes were characterized using scanning electron microscope (SEM), atomic force microscope (AFM), and Fourier transform infrared (FTIR) analysis. Membrane performance was evaluated using pure water flux (PWF), relative flux ration (RFR), and total organic carbon (TOC) removal efficiency. From SEM analysis, it was found that the nanoparticles were well dispersed in the polymeric matrix. From AFM results, it was observed that the modified membrane has higher surface roughness. The PWF of the modified membrane was enhanced, while the RFR showed to increase due to rougher membrane surface. The NOM remaoval of PES/ZnO membrane was higher than that of PES membrane and reached to 27% compared to only 16.9 % for pristine PES.


2020 ◽  
pp. 91-102
Author(s):  
Ehsan Kianfar

Poly (vinylidene fluoride) (PVDF) and poly-sulfone (PSF) polymer solutions were made at a concentration of 18% by weight of the polymer as a non-soluble additive of polymer solution in 1-methyl-2-pyrrolidone (NMP) solvent. PVDF and PSF hollow fiber membranes were fabricated via the wet phase-inversion process. Fabricated membranes were characterized in terms of gas permeability, wetting resistance, water contact angle and overall porosity. In order to study the structure of the membranes made, the scanning electron microscopy images of the model (TM3000, HITACHI, Japan) were used. The morphology study indicates that the PSF membrane shows an open cross-section structure with smaller pore sizes. However, the PVDF membrane illustrates a thick sponge-like structure. The fabricated PVDF membrane shows higher wetting resistance, surface porosity, water contact angle, and N2 permeability. The performance of the produced membranes was examined for the Absorption of carbon dioxide in a gas-liquid contactor membrane through the solution of mono-ethanolamine (MEA). The results show that CO2 absorption flux of the PVDF hollow fiber membrane is higher than PSF hollow fiber membrane. The maximum CO2 absorption flux of 8.10 × 10-3 (mole/m2 s) at the liquid phase flow rate of 300 ml/min for PVDF hollow fiber membrane was achieved and also the maximum CO2 absorption flux of 6.50 × 10-3 (mole/m2 s) at the liquid phase flow rate of 300 ml/min for PSF hollow fiber membrane was obtained. It can be concluded that a porous hydrophobic hollow fiber membrane with high surface porosity and high gas permeability can be a productive alternative for CO2 absorption through gas-liquid membrane contactors.


2017 ◽  
Vol 18 (1) ◽  
Author(s):  
R. Naim ◽  
S. Abdullah ◽  
N. Zulkifli

Different concentrations of PVDF/Cloisite hollow fiber membranes were prepared and studied via immersion test. The differences in membrane properties were observed by immersion tests at 10 days, 20 days and 30 days in DEA solution. The membranes were characterized via liquid entry pressure (LEPW) and contact angle. Surface morphology analysis study was conducted before and after immersion test using scanning electron microscopy. From the result obtained, the liquid entry pressure and contact angle showed decreasing effect after immersion in DEA solution for 30 days. SEM analysis indicated that increasing DEA concentration creates more finger-like structure compared to pristine membrane. Incorporation of cloisite into PVDF membranes improves the contact angle value but development of more finger-like structure is subjected to wetting problem.


2012 ◽  
Vol 27 (9) ◽  
pp. 951-955
Author(s):  
Chun-Li YANG ◽  
Qi-Ming XU ◽  
Ming GONG ◽  
Wei LIU

Sign in / Sign up

Export Citation Format

Share Document