surface characteristic
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 61)

H-INDEX

17
(FIVE YEARS 3)

Porta Aurea ◽  
2021 ◽  
pp. 26-55
Author(s):  
Alina Barczyk

In 1751, Jerzy August Mniszech purchased a plot in Długie Ogrody Street: the area where a large -scale residence was erected. Its designer was most probably Pierre Ricaud de Tirregaille. An important element in shaping the spatial composition of the entire palace and garden ensemble was formed by the main gate, characterized by an extremely dynamic, sculptural form, typical of Rococo art. At the top of the gate and on the fence posts there were figures: personifications of Minerva and Ceres, four putti representing the seasons and vases. At the beginning, the article presents the history and style of the sculptures. Then the question of attribution is discussed. In literature, Johann Heinrich Meissner is the most frequently indicated creator of the entire sculptural ensemble. This attribution, in view of the shortage of sources, requires confrontation with other, preserved works of the artist. Johann Heinrich Meissner (1701–1770) was born in Królewiec. He was present in Gdańsk, where from 1726 he owned a valued workshop. Having lived in the Old Town, near the Church of St Catherine, in 1755 he moved to Długie Ogrody where he located his studio, so he was a direct witness to the project carried out for Jerzy August Mniszech. Meissner’s workshop created, among other things, garden sculptures and elements of temple decorations. Among the sacred implementations, mention should be made of the decoration of the main altar in the Cathedral in Frombork, which includes four full -figure angelic figures, vases, flames and garlands made of pine wood. Meissner was also responsible for the statues of angels from the organ front in Gdańsk’s Church of St Mary, expanded in 1757–60. The soft modelling of forms precisely emphasizes the anatomy. Figures’ gestures are naturalistic. The sculptures in front of the Mniszech Palace are stylistically different from them: strongly stylized, exaggerated, they feature vibrating surface characteristic of the Rococo. Their authorship should therefore be associated with another sculpture workshop operating in Gdańsk in the mid -18th century. Another thread is the symbolic diagram of the fence decoration. In order to understand the ideological meaning of the figures in question, it is necessary to juxtapose them with the iconography found in Gdańsk’s art (e.g. Minerva decorated the façade of the Great Armory and the hall of the Main Town Hall, while the statues of Ceres were placed at the tops of tenement houses) and with European trends.


Author(s):  
Nanjun Chen ◽  
Shenyang HU ◽  
Wahyu Setyawan ◽  
Bharat Gwalani ◽  
Peter Sushko ◽  
...  

Abstract Solid-phase processing (SPP) allows one to create complex microstructures, not achievable via thermal processing alone. The resulting structures exhibit a rich palette of defects, both thermal and non-thermal, including defect substructures, such as dislocation networks. It is essential to understand the mechanisms of deformation and defect structure formation to guide SPP towards achieving desired microstructures and material properties. In this study, large-scale molecular dynamics simulations are used to investigate the effects of inhomogeneous strain distribution, that mimics deformation conditions of tribological tests, on the evolution of defects under severe shear deformation in polycrystalline Al. Analysis of defect nucleation and reaction pathways reveals that strong geometric constraints suppress the nucleation and slide of low energy dislocation 1/2<110>{111} but promote the nucleation and slide of high energy dislocations, such as [1-10](001) and 1/2[1-1-2](1-11). A rough contact surface, characteristic to tribological tests, imposes an inhomogeneous stress field leading to inhomogeneous defect substructures due to location-dependent activation of slip systems. The results suggest that high-energy dislocations can dominate the evolution of grain structures in highly constrained environments, which should be considered in modeling plastic deformation and grain refinement during SPP.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7514
Author(s):  
Alexander Pelmenev ◽  
Alexander Levchenko ◽  
Leonid Mezhov-Deglin

The onset of the Rayleigh–Benard convection (RBC) in a heated from above normal He-I layer in a cylindrical vessel in the temperature range Tλ < T ≤ Tm (RBC in non-Oberbeck–Boussinesq approximation) is attended by the emergence of a number of vortices on the free liquid surface. Here, Tλ = 2.1768 K is the temperature of the superfluid He-II–normal He-I phase transition, and the liquid density passes through a well-pronounced maximum at Tm ≈ Tλ + 6 mK. The inner vessel diameter was D = 12.4 cm, and the helium layer thickness was h ≈ 2.5 cm. The mutual interaction of the vortices between each other and their interaction with turbulent structures appeared in the layer volume during the RBC development gave rise to the formation of a vortex dipole (two large-scale vortices) on the surface. Characteristic sizes of the vortices were limited by the vessel diameter. The formation of large-scale vortices with characteristic sizes twice larger than the layer thickness can be attributed to the arising an inverse vortex cascade on the two-dimensional layer surface. Moreover, when the layer temperature exceeds Tm, convective flows in the volume decay. In the absence of the energy pumping from the bulk, the total energy of the vortex system on the surface decreases with time according to a power law.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012009
Author(s):  
R Nedjai ◽  
N A Kabbashi ◽  
M Z Alam ◽  
M F R Al-Khatib

Abstract Chemical agents have a good influence on the formation of activated carbons, surface characteristic, and its adsorption properties. In this study, the effect of activating agents (ZnCl2, KOH, and H3PO4) on baobab fruit shell (BFS) were evaluated. The characteristics of the baobab fruit shell based activated carbon (BF-ACs) were evaluated through the yield and iodine number. BF-ACs were also characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), and nitrogen (N2) adsorption. SEM analysis illustrates those porous structures formed on the surface of BF-ACs were with different sizes. The XRD analysis show that the main structures of BF-ACs are amorphous. FT-IR data demonstrates the presence of different surface groups on the produced BF-ACs. Among activating agent, the KOH was observed to the most appropriate for the production of activated carbon with a large surface area (1029.44 m2/g) from baobab fruit shell.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aasma Saeed ◽  
Muhammad Asif Hanif ◽  
Haq Nawaz ◽  
Rashad Waseem Khan Qadri

AbstractThe present study was undertaken with aims to produced catalyst loaded on low-cost clay supports and to utilize plum waste seed oil for the production of biodiesel. For this purpose, Bentonite–potassium ferricyanide, White pocha-potassium ferricyanide, Granite-potassium ferricyanide, Sindh clay-potassium ferricyanide, and Kolten-potassium ferricyanide composites were prepared. Transesterification of plum oil under the different conditions of reactions like catalysts concentrations (0.15, 0.3 and 0.6 g), temperature (50, 60, 70 and 80 °C), reaction time (2, 4 and 6 h) and oil to methanol ratio (1:10) was conducted. The maximum biodiesel yield was recorded for Bentonite–potassium ferricyanide composite. This composite was subjected to calcination process to produce Calcinized bentonite–potassium ferricyanide composite and a further improvement in biodiesel amount was recorded. The fuel quality parameters of all biodiesel samples were in standard range. Gas chromatographic mass spectrometric analysis confirmed the presence of oleic and linoleic acids in the plum seed oil. The characterization of composite was done using FTIR, SEM and EDX. Two infrared bands are observed in the spectrum from 1650 to 1630 cm−1 indicates that the composite materials contained highly hydrogen bonded water. The presence of surface hydroxyls groups can also be confirmed from FTIR data. SEM image clearly show the presence of nano-rods on the surface of Granite-potassium ferricyanide and Kolten-potassium ferricyanide composites. Another interesting observation that can be recorded from SEM images is the changes in surface characteristic of Bentonite–potassium ferricyanide composite after calcination (at 750 °C, 1 atm for 4 h). Calcinized bentonite–potassium ferricyanide composite found to contain more nano rod like structures at its surface as compared to Bentonite–potassium ferricyanide composite which contained spherical particles. EDX data of Bentonite–potassium ferricyanide composite and Calcinized bentonite–potassium ferricyanide composite show that after calcination carbon and oxygen was reduced. The other lost volatile compounds after calcination were of Na, Mg, Al, Si, and S. The XRD spectrum of pure bentonite showed the average crystal size of 24.46 nm and calcinized bentonite of 25.59 nm. The average crystal size of bentonite and potassium ferricyanide composite and its calcinized form was around 33.76 nm and 41.05 nm, respectively.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1465
Author(s):  
Tinglu Song ◽  
Meishuai Zou ◽  
Defeng Lu ◽  
Hanyuan Chen ◽  
Benpeng Wang ◽  
...  

In recent years, time of flight-secondary ion mass spectrometer (ToF-SIMS) has been widely employed to acquire surface information of materials. Here, we investigated the alloy surface by combining the mass spectra and 2D mapping images of ToF-SIMS. We found by surprise that these two results seem to be inconsistent with each other. Therefore, other surface characteristic tools such as SEM-EDS were further used to provide additional supports. The results indicated that such differences may originate from the variance of secondary ion yields, which might be affected by crystal orientation.


Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1061
Author(s):  
Jiahao Zheng ◽  
Yi He ◽  
Xiaohui Jiang ◽  
Tong Nie ◽  
Yuxin Lei

The Loess Plateau is the main soil erosion area within the Yellow River Basin. Quantifying the contribution rate of climate change and human activities to runoff change can provide support for water resources management in the Yellow River Basin. Kuye River Basin is located in the Loess Plateau. As a first-class tributary of the Yellow River, it was selected as the study area. Runoff from the Kuye River Basin has decreased significantly since the 1990s owing to climate change and anthropogenic coal mining. The main objective of this study was to quantify the contribution and sensitivity of climate change and anthropogenic activities to runoff changes using three popular Budyko and elasticity coefficient methods, as well as to compare the similarities and differences among the three methods. The results show that: (1) Through four mutation point test methods, the change point of runoff in the study period of Kuye River Basin is 1997. (2) The elasticity coefficients calculated by the three Budyko methods showed that during the study period, the runoff was more sensitive to changes in precipitation, followed by the catchment surface characteristic parameters and the potential evapotranspiration. (3) All three Budyko methods can yield reasonable contributions of climate change and human activity to runoff changes. The three methods together indicate that the influence of the catchment surface characteristic parameters is the most important factor for the runoff variation in the Kuye River.


2021 ◽  
Vol 2021 (1) ◽  
pp. 012025
Author(s):  
Lichao Gong ◽  
Yanjie Liu ◽  
Rongyu Ge ◽  
Zhenfeng Jiang ◽  
Xiuli Fu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4514
Author(s):  
Chuan-Pei Lee ◽  
Bayu-Tri Murti ◽  
Po-Kang Yang ◽  
Francesca Rossi ◽  
Carlo Carraro ◽  
...  

A cobalt oxide (Co3O4)-decorated silicon carbide (SiC) nano-tree array (denoted as Co3O4/SiC NTA) electrode is synthesized, and it is investigated for the use in the micro-supercapacitor. Firstly, the well-standing SiC nanowires (NWs) are prepared by nickel (Ni)-catalyzed chemical vapor deposition (CVD) method, and then the thin layer of Co3O4 and the hierarchical Co3O4 nano-flower-clusters are, respectively fabricated on the side-walls and the top side of the SiC NWs via electrodeposition. The deposition of Co3O4 on the SiC NWs benefits for the charge transfer at the electrode/aqueous electrolyte interface due to its extremely hydrophilic surface characteristic after Co3O4 decoration. Furthermore, the Co3O4/SiC NTA electrode would possess a directional charge transport route along the nanowire length of SiC NWs owing to their well-standing architecture. By using the Co3O4/SiC NTA electrode for micro-supercapacitor, the areal capacitance obtained from cyclic voltammetry measurement reaches 845 mF cm−2 at a 10 mV s−1 scan rate. Finally, the capacitance durability is also evaluated by the cycling test of cyclic voltammetry at a high scan rate of 150 mV s−1 for 2000 cycles.


2021 ◽  
Author(s):  
Aasma Saeed ◽  
Muhammad Asif Hanif ◽  
Haq Nawaz ◽  
Rashid Waseem Khan Qadri

Abstract The present study was undertaken with aims to produced catalyst loaded on low-cost clay supports and to utilize plum waste seed oil for the production of biodiesel. For this purpose, Bentonite-potassium ferricyanide, White pocha-potassium ferricyanide, Granite-potassium ferricyanide, Sindh clay-potassium ferricyanide, and Kolten-potassium ferricyanide composites were prepared. The maximum biodiesel yield was recorded for Bentonite-potassium ferricyanide composite. This composite was subjected to calcination process to produce Calcinized bentonite -potassium ferricyanide composite and a further improvement in biodiesel amount was recorded. The fuel quality parameters of all biodiesel samples were found in the recorded range. Gas chromatographic mass spectrometric analysis confirmed the presence of oleic and linoleic acids in the plum seed oil. The characterization of composite was done using FTIR, SEM and EDX. Two infrared bands are observed in the spectrum from 1650-1630 cm-1 indicates that the composite materials contained highly hydrogen bonded water. The presence of surface hydroxyls groups can also be confirmed from FTIR data. SEM image clearly show the presence of nano-rods on the surface of Granite-potassium ferricyanide and Kolten-potassium ferricyanide composites. Another interesting observation that can be recorded from SEM images is the changes in surface characteristic of Bentonite-potassium ferricyanide composite after calcination. Calcinized bentonite-potassium ferricyanide composite found to contain more nano rod like structures at its surface as compared to Bentonite-potassium ferricyanide composite which contained spherical particles. EDX data of Bentonite-potassium ferricyanide composite and Calcinized bentonite-potassium ferricyanide composite show that after calcination carbon and oxygen was reduced. The other lost volatile compounds after calcination were of Na, Mg, Al, Si, and S.


Sign in / Sign up

Export Citation Format

Share Document