scholarly journals Non-Solvent Influence of Hydrophobic Polymeric Layer Deposition on PVDF Hollow Fiber Membrane for CO2 Gas Absorption

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Abdul Latif Ahmad ◽  
Amir Ikmal Hassan ◽  
Leo Choe Peng

The implementation of hydrophobicity on membranes is becoming crucial in current membrane technological development, especially in membrane gas absorption (MGA). In order to prevent membrane wetting, a polypropylene (PP) dense layer coating was deposited on a commercial poly(vinylidene fluoride) (PVDF) hollow fiber membrane as a method of enhancing surface hydrophobicity. The weight concentration of PP pellets was varied from 10 mg mL−1 to 40 mg mL−1 and dissolved in xylene. A two-step dip coating was implemented where the PVDF membrane was immersed in a non-solvent followed by a polymer coating solution. The effects of the modified membrane with the non-solvent methyl ethyl ketone (MEK) and without the non–solvent was investigated over all weight concentrations of the coating solution. The SEM investigation found that the modified membrane surface transfiguration formed microspherulites that intensified as PP concentration increased with and without MEK. To understand the coating formation further, the solvent–non-solvent compatibility with the polymer was also discussed in this study. The membrane characterizations on the porosity, the contact angle, and the FTIR spectra were also conducted in determining the polymer coating properties. Hydrophobic membrane was achieved up to 119.85° contact angle and peak porosity of 87.62% using MEK as the non-solvent 40 mg mL−1 PP concentration. The objective of the current manuscript was to test the hydrophobicity and wetting degree of the coating layer. Hence, physical absorption via the membrane contactor using CO2 as the feed gas was carried out. The maximum CO2 flux of 3.33 × 10−4 mol m−2 s−1 was achieved by 25 mg modified membrane at a fixed absorbent flow rate of 100 mL min−1 while 40 mg modified membrane showed better overall flux stability.

2013 ◽  
Vol 15 (3) ◽  
pp. 1-6 ◽  
Author(s):  
A.L. Ahmad ◽  
H.N. Mohammed ◽  
B.S. Ooi ◽  
C.P. Leo

Abstract Porous superhydrophobic layer of low-density polyethylene (LDPE) was created by a simple approach on the Poly(vinylidenefluoride) (PVDF) hollow fiber membranes. Acetone and ethanol mixtures with different volume ratios were used as the non-solvent on the coating surface. A 5:1 (v/v) acetone/ethanol ratio provided a porous surface with a 152° ± 3.2 water contact angle. The high contact angle could reduce membrane wettability for better carbon dioxide capture when the membrane was used as gas-liquid contactor in absorption processes. To assess the effect of the created superhydrophobic layer, the pristine and modified membranes were tested in a CO2 absorption system for ten days. The results revealed that the absorption flux in the modified membrane was higher than that of pristine membrane.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
S. Kartohardjono ◽  
V. Chen

Hollow fiber membrane modules have been extensively used as gas-liquid contactor devices to provide a high surface area within a small volume. Hollow fiber membrane contactors have been demonstrated in a wide range of application such as in gas stripping and gas absorption. In this study the performance of sealed end hydrophobic microporous hollow fiber membranes contactors were evaluated to remove dissolved oxygen from water via vacuum degassing process. Hollow fibers membranes used in the experiment were hydrophobic microporous polypropylene of 650 μm in outer diameter, 130 μm wall thickness and nominal pore size of 0.2 μm. Based on the experimentalresult the sealed end membrane contactor can remove oxygen from water as high as 3.4-gram oxygen per square meter of membrane area per hour. The oxygen flux decreases with increasing module-packing density for the same water velocity. The same effect also occurred for the mass transfer coefficient of the membrane contactors. The mass transfer coefficients were independent of fiber length within the range of study. Hydrodynamics analysis of the contactors showed that at the same Reynolds number pressure drops increase with increasing packing density due to an increase in friction between fibers and water.


RSC Advances ◽  
2017 ◽  
Vol 7 (22) ◽  
pp. 13451-13457 ◽  
Author(s):  
Zhaohui Zhang ◽  
Xiaona Wu ◽  
Liang Wang ◽  
Bin Zhao ◽  
Junjing Li ◽  
...  

As an emerging technology, membrane gas absorption (MGA) contactors for carbon dioxide (CO2) capture exhibit great advantages compared to conventional chemical CO2 absorption processes.


2021 ◽  
Vol 8 (2) ◽  
pp. 11-20
Author(s):  
Abdullah Adnan Abdulkarim ◽  
Yosra Mohammed Mahdi ◽  
Haider Jasim Mohammed

Polyethersulfone/zinc oxide mixed matrix hollow fiber membrane was fabricated using dry/wet phase inversion method. Zinc oxide nanoparticles (2 wt.%) were dispersed in N,N-dimethylacetamide (DMAc) solvent in the present of polyvinylepyrrolidene. The dope solution speed and take up speed was similar with performing the spinning process at room temperature. The produced membranes were characterized using scanning electron microscope (SEM), atomic force microscope (AFM), and Fourier transform infrared (FTIR) analysis. Membrane performance was evaluated using pure water flux (PWF), relative flux ration (RFR), and total organic carbon (TOC) removal efficiency. From SEM analysis, it was found that the nanoparticles were well dispersed in the polymeric matrix. From AFM results, it was observed that the modified membrane has higher surface roughness. The PWF of the modified membrane was enhanced, while the RFR showed to increase due to rougher membrane surface. The NOM remaoval of PES/ZnO membrane was higher than that of PES membrane and reached to 27% compared to only 16.9 % for pristine PES.


2005 ◽  
Vol 31 (5) ◽  
pp. 325-330 ◽  
Author(s):  
Norifumi Matsumiya ◽  
Masaaki Teramoto ◽  
Satoshi Kitada ◽  
Kenji Haraya ◽  
Hideto Matsuyama

Sign in / Sign up

Export Citation Format

Share Document