scholarly journals A Comparative Study of Dynamic Load Response of High Temperature PEM Fuel Cells

2020 ◽  
Vol 24 (1) ◽  
pp. 529-544
Author(s):  
Martin Tomas ◽  
Pavel Novotny ◽  
Fatemeh Gholami ◽  
Ondrej Tucek ◽  
Frantisek Marsik

Abstract The high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) based on the polybenzimidazole (PBI) membrane doped with phosphoric acid (H3PO4) presents a promising route in the development of fuel cell technology. The higher operating temperature of 160–200 °C results in an increased tolerance of the platinum catalyst to the carbon monoxide, an improved electrode kinetics, a higher-grade heat produced by the fuel cell, and a simplified water management due to the absence of liquid water in the system. In this study, the accelerated stress test protocol (AST) corresponding to the Driving Duty Cycle was used to characterize two sets of commercial MEAs, by Danish Power Systems Ltd. and FuMA-tech GmbH, respectively. Performance characteristics prior to and after the AST procedure were measured. The changes in the resistivity of the MEA were examined by electrochemical impedance spectroscopy (EIS). The EIS data were analysed and interpreted by a suitable equivalent circuit that consisted of a resistor and the Voigt’s structure in series with constant phase elements. Conducted experiments and their analysis showed suitability of the HT-PEMFC technology in applications where dynamical load of the cell is expected. Moreover, the lower number of AST cycles did not seriously affect the cell performance. As expected, with increasing number of AST cycles, decrease in the cell performance was observed. In general, presented comparative study is expected to provide an extension of existing data for present and future development of diagnostic in the field of HT-PEMFC.

2015 ◽  
Vol 3 (20) ◽  
pp. 10864-10874 ◽  
Author(s):  
Florian Mack ◽  
Karin Aniol ◽  
Corina Ellwein ◽  
Jochen Kerres ◽  
Roswitha Zeis

We present novel acid–base blend membranes with improved chemical stability and competitive fuel cell performance compared to conventional PBI membranes.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5440 ◽  
Author(s):  
Khadijeh Hooshyari ◽  
Bahman Amini Horri ◽  
Hamid Abdoli ◽  
Mohsen Fallah Vostakola ◽  
Parvaneh Kakavand ◽  
...  

This review summarizes the current status, operating principles, and recent advances in high-temperature polymer electrolyte membranes (HT-PEMs), with a particular focus on the recent developments, technical challenges, and commercial prospects of the HT-PEM fuel cells. A detailed review of the most recent research activities has been covered by this work, with a major focus on the state-of-the-art concepts describing the proton conductivity and degradation mechanisms of HT-PEMs. In addition, the fuel cell performance and the lifetime of HT-PEM fuel cells as a function of operating conditions have been discussed. In addition, the review highlights the important outcomes found in the recent literature about the HT-PEM fuel cell. The main objectives of this review paper are as follows: (1) the latest development of the HT-PEMs, primarily based on polybenzimidazole membranes and (2) the latest development of the fuel cell performance and the lifetime of the HT-PEMs.


Author(s):  
Luis Breziner ◽  
Peter Strahs ◽  
Parsaoran Hutapea

The objective of this research is to analyze the effects of vibration on the performance of hydrogen PEM fuel cells. It has been reported that if the liquid water transport across the gas diffusion layer (GDL) changes, so does the overall cell performance. Since many fuel cells operate under a vibrating environment –as in the case of automotive applications, this may influence the liquid water concentration across the GDL at different current densities, affecting the overall fuel cell performance. The problem was developed in two main steps. First, the basis for an analytical model was established using current models for water transport in porous media. Then, a series of experiments were carried, monitoring the performance of the fuel cell for different parameters of oscillation. For sinusoidal vibration at 10, 20 and 50Hz (2 g of magnitude), a decrease in the fuel cell performance by 2.2%, 1.1% and 1.3% was recorded when compared to operation at no vibration respectively. For 5 g of magnitude, the fuel cell reported a drop of 5.8% at 50 Hz, whereas at 20 Hz the performance increased by 1.3%. Although more extensive experimentation is needed to identify a relationship between magnitude and frequency of vibration affecting the performance of the fuel cell as well as a throughout examination of the liquid water formation in the cathode, this study shows that sinusoidal vibration, overall, affects the performance of PEM fuel cells.


Sign in / Sign up

Export Citation Format

Share Document